老照片修复新宠 ——AI工作流应用之 ComfyUI

前言:

随着AI的兴起,互联网已经迎来了AI时代,作为一名工作多年的程序员也要跟上时代的潮流,今天我们来介绍一款基于Stable Diffusion模型的开源AI工具:ComfyUI

话不多说,我们先来看看基于ComfyUI搭建的一套工作流的效果

看起来怎么样,真实度还算可以,清晰度和色彩也都不错,下面就来介绍一下ComfyUI的相关知识。

这份完整版的comfyui整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

01

ComfyUI 初印象

(一)ComfyUI 是什么

ComfyUI 是一款别具一格的图形用户界面(GUI),专为 Stable Diffusion 模型量身打造。它摒弃了传统的操作方式,采用基于节点的设计,为用户带来全新的交互体验。在 ComfyUI 的世界里,图像生成不再是黑箱操作,而是通过一个个可视化的节点,清晰地展现出工作流程的每一个环节。

当你打开 ComfyUI,映入眼帘的是一张类似流程图的画布,上面布满了各种各样的节点。这些节点犹如精密仪器的零部件,各自承担着独特的功能,从加载模型、输入文本提示,到指定采样参数、控制图像生成细节,再到最后的输出结果,每一个步骤都有对应的节点负责。用户只需像搭建积木一样,用线条将这些节点按照需求连接起来,就能构建出属于自己的图像生成工作流。这种高度模块化的设计,使得整个过程直观透明,不仅让专业人士能够精准掌控每一个细节,实现复杂的创意构想,也为普通爱好者打开了一扇深入了解图像生成原理的大门,让他们在探索中感受科技的魅力。

(二)它为何适合老照片修复

对于老照片修复这一特定需求而言,ComfyUI 更是展现出了诸多无可比拟的优势。首先,它的界面友好、操作直观,即便是初次接触的新手,也能在短时间内快速上手。无需复杂的编程知识或深厚的技术背景,只需了解各个节点的基本功能,就能根据老照片的实际状况,轻松搭建起修复工作流。

其次,ComfyUI 拥有丰富多样的节点,涵盖了从基础的图像加载、预处理,到高级的细节修复、色彩还原、分辨率提升等各个方面,仿佛一个琳琅满目的工具库,为老照片修复提供了全方位的支持。无论是消除照片上的细微划痕、污渍,还是重建缺失的部分,亦或是让褪色的黑白照片重新焕发出绚丽的色彩,ComfyUI 都能通过不同节点的组合运用,完美达成目标。

再者,ComfyUI 强大的自定义空间,为那些对修复效果有更高追求、希望进行深度修复和细致调整的用户提供了广阔的发挥舞台。用户可以根据老照片的年代、风格、破损程度等特点,灵活调整节点参数,精细打磨每一个修复细节,让修复后的照片不仅清晰自然,更能保留那份原汁原味的历史韵味,真正实现让老照片 “重获新生”。

02

搭建前的准备工作

(一)安装 ComfyUI

目前,ComfyUI 有两种常见的安装方法,

  • 官方提供的整合包(https://www.comfy.org/)

  • 秋叶的一键启动器(https://pan.quark.cn/s/64b808baa960)

本人使用官网的整合包

从Github上下载ComfyUI releases版本(https://github.com/comfyanonymous/ComfyUI)

解压到本地磁盘

N卡点击run_nvidia_gpu.bat启动,无显卡点击run_cpu.bat启动,等待片刻就可以开始使用啦。

(二)获取相关模型与插件

模型与插件是 ComfyUI 运行的关键要素,它们能够助力你实现各种独特的修复效果与风格。

对于老照片修复而言,你需要下载专门的修复模型和上色模型。在 liblib 平台上,通过搜索相关关键词,如 “老照片修复模型”“复古上色模型” 等,便能精准定位到所需资源。下载完成后,需将模型文件放置在特定路径下,以便 ComfyUI 能够顺利识别并调用。

将模型和 LORA 都配置妥当后,ComfyUI 便已准备就绪,静候你的指令,随时开启老照片修复的精彩之旅。

03

搭建 ComfyUI 老照片修复工作流

(一)了解所需节点

1. 基础节点大揭秘

在搭建 ComfyUI 老照片修复工作流之前,我们先来认识一下其中一些关键的基础节点,它们如同基石,支撑起整个修复流程。

CLIPTextEncode 节点,它的神奇之处在于能够将我们输入的文字描述转化为图像理解,让计算机明白我们期望照片呈现出的风格、氛围以及特定元素。在上色环节,它更是发挥着重要作用,比如我们输入 “复古色调,略带微黄的暖调色彩”,它便能引导模型朝着这个风格去上色,使照片焕发出契合回忆氛围的色泽。

CheckpointLoaderSimple 节点,主要负责加载预训练的修复、上色模型。这些模型是经过大量数据训练而成的 “智慧宝库”,蕴含着修复划痕、还原色彩、提升清晰度等诸多技能,只需通过这个节点将其引入工作流,就能借助模型的力量开启老照片的修复之旅。

ControlNetApplyAdvanced、ControlNetLoader、DiffControlNetLoader 这三组节点协同工作,堪称控制图像细节的 “黄金搭档”。它们负责加载并应用控制网络(ControlNet),能够精准地捕捉老照片中的线条、轮廓、纹理等关键信息,进而在修复过程中对细节进行精细调整,无论是重现衣物的褶皱、还原建筑的纹理,还是优化人物的发丝,都能做到丝丝入扣,让老照片的细节之处尽显精致。

KSampler 节点则专注于优化生成图像,通过多次采样的方式不断打磨图像效果,就像一位耐心的画师,一遍又一遍地润色画作,使其更加完美,让修复后的照片质感更上一层楼。

LoadImage 节点,顾名思义,是将我们珍贵的老照片导入工作流中的 “入口”,无论照片是模糊的黑白影像,还是带有破损的彩色画面,它都能将其顺利接入后续的修复流程,开启照片的 “重生” 之路。

PreviewImage 节点,如同我们修复旅程中的 “瞭望窗”,实时为我们展示每一步操作后的处理效果,让我们可以随时查看照片的变化,确保修复方向始终朝着我们理想的效果迈进,一旦发现偏差,便能及时调整。

SaveImage 节点,作为整个流程的 “终点守护者”,在我们对修复成果满意后,它会将最终生成的焕然一新的照片妥善保存下来,定格这份美好的回忆。

VAEDecode 和 VAEEncode 节点,它们像是一对默契的搭档,负责编码解码图像的特征,能够深入挖掘图像中的高维特征信息,为更细致的处理提供数据支持,让修复工作能够在精准理解图像的基础上进行。

2. 自定义节点来助力

除了基础节点,ComfyUI 还支持自定义节点,这些节点为老照片修复带来了更多个性化和专业化的功能,进一步拓展了修复的边界。

BNK_CLIPTextEncodeAdvanced 节点,作为高级文本编码工具,它能够对图像描述进行深度优化。当我们想要突出照片中的某个特定颜色,或是追求某种独特的修复效果时,它便能派上用场。比如,我们希望着重修复照片中红色花朵的色彩,使其更加鲜艳夺目,通过这个节点输入精准描述,就能引导模型对花朵部分进行针对性强化。

ColorCorrect 节点,专注于校正图像色彩,面对老照片中因岁月侵蚀而变得失真、偏色的情况,它能依据色彩理论和图像特征,精准地还原出原本的色彩,让照片中的蓝天更蓝、绿草更绿,人物肤色也更加自然,仿佛重新找回了当年拍摄时的鲜活色彩。

Concat Text _O 节点,看似小巧却有着大作用,它能够将多段文本描述巧妙地拼接在一起。在老照片上色时,我们可能需要同时描述人物的衣着颜色、背景色调以及整体的风格倾向,这个节点就能将这些分散的描述整合起来,传递给模型,让上色效果更加自然和谐,毫无拼凑之感。

ConstrainImage|pysssss 节点,宛如一位严谨的 “质检员”,它能够限制图像的一些特征,确保在修复过程中,照片不会因为过度修复而失真,始终保持那份原汁原味的真实感,让修复后的照片既清晰美观,又不失原本的韵味。

FaceRestoreCFWithModel、FaceRestoreModelLoader 节点组合,是人像修复的得力助手。对于老照片中常见的人物面部模糊、五官不清等问题,它们能够加载并应用专门的人像修复模型,通过智能算法识别面部结构,精细修复面部细节,让照片中的人物重新焕发出清晰的面容,五官更加立体生动,仿佛岁月从未在他们脸上留下痕迹。

ImageUpscaleWithModel 和 Upscale Model Loader 节点,构成了图像放大模块。在完成初步修复后,照片可能仍然存在分辨率不足的问题,这时候它们就会发挥作用,依据先进的图像放大算法,将图像进行无损放大,提升分辨率,让照片的细节更加清晰可辨,无论是人物的发丝、衣物的纹理,还是背景的细微之处,都能以高清的姿态呈现出来。

LineArtPreprocessor 节点,擅长提取图像中的线条,对于那些边缘模糊、细节丢失的老照片来说,它就像是一位 “素描大师”,能够精准地勾勒出照片的线条和轮廓,将原图的结构完整地保留下来,为后续的修复工作搭建起坚实的框架,确保修复过程不会偏离照片原本的模样。

Reroute、ShowText|pysssss 节点,属于辅助节点,它们虽然不直接参与图像的修复处理,但却在工作流中扮演着不可或缺的角色。Reroute 节点能够灵活地进行路径重定向,让节点之间的连接更加合理顺畅,优化工作流的布局;ShowText|pysssss 节点则像是一个贴心的 “提示员”,它可以将一些关键信息以文本形式展示出来,方便我们随时查看节点参数、状态等重要信息,让整个修复过程更加透明可控。

Text box 节点,为我们提供了一个便捷的文本输入窗口,方便我们插入相关文字信息,比如照片的拍摄年代、地点、人物身份等描述,这些信息可以辅助模型更好地理解照片背景,从而在修复和上色过程中做出更贴合情境的决策,让修复成果更具历史感和故事性。

WD14Tagger|pysssss 节点,作为图片内容的标签生成器,它能够智能地识别照片中的各种元素,并生成相应的标签。这些标签有助于我们更好地理解图像内容,同时也能为模型提供更多参考信息,让修复工作更加有的放矢,精准地针对照片中的不同元素进行优化处理。

(二)详细搭建步骤

1. 导入老照片

首先,我们要将承载着珍贵回忆的老照片引入 ComfyUI 的工作流中。这一步借助 LoadImage 节点轻松实现,无论您手中的老照片是历经岁月侵蚀而变得模糊的黑白影像,还是带有划痕、污渍等破损痕迹的彩色照片,只需在 ComfyUI 的界面中找到 LoadImage 节点,点击后选择您要修复的照片文件,即可完成导入操作,正式开启这场老照片的修复之旅。

2. 提取线条结构

对于那些边缘模糊、细节丢失的老照片,为了在后续修复过程中更好地保留原图的结构,我们需要使用 LineArtPreprocessor 节点来提取图像中的线条和轮廓。将导入的照片连接到该节点,它会运用智能算法,如同一位技艺精湛的画师,精准地勾勒出照片的主体轮廓,将人物、建筑、景物等关键元素的线条清晰呈现,为后续的修复工作搭建起稳固的框架,确保修复后的照片依然保留着那份熟悉的韵味。

3. 应用控制网络

接下来,便是借助 ControlNet 的强大力量进一步提升图片细节并调整颜色。使用 ControlNetLoader 和 DiffControlNetLoader 节点加载预先准备好的控制网络,这些网络蕴含着丰富的图像特征信息,能够精准捕捉到老照片中的线条、纹理、光影等关键细节。与此同时,ControlNetApplyAdvanced 节点则如同一位精细的调色师,在生成过程中细致入微地控制颜色和纹理,让照片的修复效果更加逼真,无论是重现衣物的细腻质感、还原建筑的古朴风貌,还是优化人物面部的光影过渡,都能做到尽善尽美。

4. 面部细节修复

若老照片中有幸定格了人物的面容,那么使用 FaceRestoreModelLoader 和 FaceRestoreCFWithModel 节点来修复面部细节无疑是至关重要的一步。这两个节点默契配合,加载专门针对人像修复的模型,通过智能识别面部五官的结构与特征,对模糊的五官进行精细修复,让人物的眼睛更加明亮有神、嘴唇更加清晰饱满、面部肌肤更加平滑细腻,经过此步骤处理,照片中的人物仿佛穿越时空,重新焕发出青春的光彩,五官立体感十足,记忆中的面容得以清晰重现。

5. 图像放大与分辨率提升

在完成初步修复后,为了让照片呈现出更加高清的效果,我们需要使用 ImageUpscaleWithModel 节点将图像放大,进一步提升分辨率。该节点依托先进的图像放大算法,如同神奇的放大镜,在不损失过多细节的前提下,将照片的尺寸合理扩大,让之前修复后的细节更加清晰可辨,无论是人物发丝的丝丝分明、衣物纹理的细腻呈现,还是背景元素的丰富展现,都能以更高清的姿态映入眼帘,使得最终的修复效果自然流畅,毫无瑕疵。

6. 老照片上色

这一步堪称赋予老照片新生命的关键环节。我们首先通过 ColorCorrect 节点校正图像颜色,它依据色彩科学原理和图像自身的特征,智能地调整色彩平衡、饱和度、对比度等参数,让老照片中因岁月而褪色、偏色的部分重新焕发出自然的光彩。在此基础上,还可以配合 BNK_CLIPTextEncodeAdvanced 节点,输入一些精准的颜色描述,比如 “人物身着深蓝色外套,背景为暖黄色调的复古房间”,引导模型按照我们的期望进行上色,通过细致调整各项参数,最终让老照片焕然一新,仿佛重新回到了拍摄的那一刻,色彩鲜艳且富有质感。

7. 文字描述与优化

为了确保照片的上色和修复效果完全符合我们内心的期待,文字描述与优化这一步必不可少。我们可以使用 CLIPTextEncode 和 BNK_CLIPTextEncodeAdvanced 节点对想要呈现的效果进行编码,将脑海中的画面转化为计算机能够理解的文本指令。例如,若希望照片呈现出复古的色调、清晰的细节以及人物生动的表情,便可在节点中输入相应描述。之后,利用 Concat Text _O 节点将这些文本信息巧妙连接在一起,让模型全面理解我们的需求,从而在修复和上色过程中精准发力,确保整体效果自然和谐,完美还原我们记忆中的美好瞬间。

8. 实时预览与保存

在整个修复过程中,PreviewImage 节点为我们提供了实时查看修复效果的便利。每完成一个步骤或调整一次参数,都能通过该节点即时预览照片的变化,如同拥有一个随时可用的 “魔镜”,让我们可以仔细审视修复的方向是否正确,细节是否到位。一旦确认照片达到了理想效果,只需找到 SaveImage 节点,设置好保存路径和文件名,点击保存,便能将这份承载着珍贵回忆的修复成果永久留存下来,让老照片以全新的面貌继续诉说往昔的故事,成为家族传承、个人记忆中的璀璨珍宝。

04

修复实战与效果展示

而在面对分辨率较低的老照片时,ComfyUI 的图像放大功能发挥了巨大作用。通过先进的算法,它能够在提升分辨率的同时,最大限度地保留图像细节,让照片从模糊不清变得清晰锐利。一张记录着儿时乡村场景的低分辨率照片,在经过修复和放大后,田野间的农作物、远处的山峦、屋舍的瓦片,每一个细节都清晰可辨,将那份浓浓的乡愁展现得淋漓尽致。这些令人惊叹的修复效果,无一不彰显着 ComfyUI 在老照片修复领域的强大实力,让珍贵的记忆得以永恒保存。

05

总结与进阶指引

至此,我们已一同深入探索了 ComfyUI 修复老照片的精彩世界,从初识 ComfyUI 的独特魅力,到精心筹备安装与资源获取,再到一步步搭建起专属的修复工作流,直至目睹老照片在其助力下重焕生机,相信大家都已领略到这项技术的强大与温情。

ComfyUI 为我们开启了一扇通往过去的新大门,让那些被岁月尘封的珍贵瞬间得以再度清晰呈现。希望大家在阅读本文后,能够亲自动手尝试,用自己的热情与耐心,赋予家中老照片全新的生命力。每一张修复后的照片,不仅是对回忆的致敬,更是一份独一无二的情感传承。

倘若你渴望进一步提升修复技艺,探索更多可能,不妨深入学习 ComfyUI 的高级节点运用,钻研不同参数设置对修复效果的精细影响,尝试融合更多新颖的模型与插件,创造出独具个人风格的修复方案。同时,关注相关的 AI 技术论坛、社区,与众多爱好者交流心得、分享经验,你将在这个充满创意与探索的领域中不断成长,发现更多惊喜,让老照片修复这一技艺在你的手中绽放出更加绚烂的光彩。

这份完整版的comfyui整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值