“你说你会AI,那你有AI作品集吗?”
“你可以实现AI精准控制生图吗?”
“你这AI生的图,商用会有版权问题吗?”
“这AI图挺好看,但和我们品牌调性差太远了”
同样用AI出图,你是否正在经历这样的「AI 焦虑」?
从一开始的质疑AI,到后来的理解AI、再到现在的**积极拥抱AI,**大家对AI的态度发生了很大的变化。
在“拥抱”的过程中,很多人已经不再仅仅是出一些好看的废物图,而是想将其应用到实际工作场景中,市场上一些AI相关的岗位招聘,也会要求有相应的AI商业作品。
经常有设计师同学反馈AI绘图存在**「出图快但落地难、无法形成作品集」**的困境。
为什么别人用AI出的图已经商用了,你还在因为这些问题而烦恼呢?
问题的核心在于:你缺的不是工具技巧,而是搭建「AI翻译系统」——用商业逻辑驯化AI,让每张图自带「落地基因」。
1如何借势AIGC,拉开与同行的差距?
AI 不是替代设计师,而是放大专业壁垒的杠杆。
-
网易严选利用 AIGC 生成品牌调性图,同时保持品牌统一的极简美学。
-
飞猪地铁广告借用AI生成动态插画,精准匹配年轻用户追求的「活力感」。
1
工具链搭建:从单点智能到全链路协同
AIGC 设计领域当下存在一个核心矛盾,那就是工具如爆炸般增长,可商业落地效率却不尽人意,二者之间出现了严重的割裂。
大多设计师却陷入了 “抽卡式出图” 的困境。
AIGC 的 “创造性” 本质源于其算法的随机性,但商业设计需要稳定可控的输出。
要解决这一问题,设计师就需要搭建多元化工具链,实现从 “单兵作战” 到 “系统化协同” ,通过技术手段驯服这种随机性,建立 “可控的创造力”。
例如,使用 Stable Diffusion 生成品牌 VI 素材时,设计师可通过 “垫图” 功能提供基础框架,锁定核心元素(如 logo 位置、配色方案);结合 Seed 值固定生成参数,确保不同批次的设计风格一致。
飞猪地铁广告的案例进一步验证了控制技术的重要性。
设计师通过AI生成动态插画时,并非简单依赖关键词,而是用溶图、放大、修复、拓展进一步的调整,最终输出既保留AI创意亮点,又符合品牌视觉规范的广告素材。
这种对工具链的深度掌握,使设计师能够在效率与质量间找到平衡点,减少陷入 “AI 失控” 的风险。
2
需求翻译:商业语言与视觉表达的桥梁
在 AIGC 时代,设计师的核心竞争力已从 “视觉执行者” 转向 “需求解码者”。
传统设计流程中,设计师往往依赖经验或主观审美进行创作,但 AIGC 的介入要求设计师必须以更结构化的方式拆解需求。
例如,当某茶饮品牌需要电商主图时,设计师需将 “提升转化率” 的商业目标转化为具体的视觉参数:
结合饮品 “好竹意” 卖点,设定 “竹林场景” 的关键词;匹配品牌 “中式竹林” 主色调,限定色彩范围;
▲AI辅助的商业落地
同时通过 “动态竹叶”“磨砂材质” 等技术术语引导模型生成符合预期的图像。这种将商业目标转化为可执行指令的能力,直接影响 AIGC 输出的有效性。
设计师在此过程中扮演的是 “翻译官” 角色,将市场洞察、用户需求与技术能力融合,形成独特的创意框架。
3
从「关键词玄学」到「结构化公式」
以往,设计师在利用 AIGC 工具时,往往依赖关键词来生成图像。
但关键词的选择犹如玄学,同样的主题,不同的关键词组合可能得到天差地别的结果,且难以保证产出符合商业场景需求。
如,为一款手机设计宣传海报,输入 “手机”“科技”“数码产品” 等简单关键词,生成的图像可能风格杂乱,无法精准传达产品的高端质感与商务属性。
这是因为关键词缺乏系统性,AIGC 工具难以理解设计师脑海中的完整画面和商业诉求。
构建结构化公式是将设计需求拆解为多个明确、有序的组成部分,形成一套可计算、可重复的规则。在 AIGC 设计中,它一般包含主题、风格、元素、场景等关键要素。
以刚才的手机海报为例,结构化公式可以是:主题(手机宣传海报)+ 风格(现代科技感、轻奢质感)+ 元素(产品特写、品牌 logo)+ 场景(自然、水波、花朵、集市等)。
通过这样的公式,AIGC 工具能更准确地理解设计意图,生成的图像更贴合商业场景,且具有较高的可复用性。
可复用资产库搭建
1.元素分类整理
将各类设计元素,如人物、风景、图标、装饰图案等,按照风格、用途等进行分类。例如,将所有复古风格的装饰图案归为一类,方便在设计复古主题作品时快速调用。
2.模板创建
基于不同商业场景,如广告海报、产品包装、网页界面等,创建相应的 AIGC 设计模板。模板中固定部分元素,如海报的品牌标识位置、包装的基本布局等,同时预留可变区域供设计师根据具体需求调整。
3.参数设置记录
记录每次使用 AIGC 工具时的参数设置,如生成图像的分辨率、色彩模式、渲染精度等。这些参数设置可作为资产保存,下次遇到类似设计需求时直接复用,保证设计质量的稳定性。
通过结构化公式和可复用资产库,设计师能在短时间内生成多版符合商业场景的设计方案。
AIGC 在商业场景中的应用充满了无限潜力,但也需要我们解决工具链、需求适配和关键词等方面的问题。只有这样,才能让 AIGC 真正为商业发展赋能,创造更大的价值。
2
AIGC人才:从「会出图」到「懂落地」
“AI一日,人间一年”,虎仔不由感慨。
随着 GPT、Midjourney、Deepseek等热门 AI 模型的普及,人工智能生成的内容(AIGC)已经从“遥远的未来”变成了“可触及的当下”,并且正在以前所未有的速度革新着艺术创作的边界。
其增长潜力和行业影响力不可忽视,特别是在设计行业。
据猎聘数据显示,2023年1-8月AIGC领域新发职位数量同比增长139.76%,但企业最缺的不是“AI画手”,而是具备以下能力的人才:
- 商业洞察力:能将品牌策略转化为 AI 可执行的视觉语言;
- 全流程把控:从需求分析、模型训练到后期合成,打通设计闭环;
- 版权与合规意识:避免使用侵权素材,合理应用生成内容。
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。