A novel method for identifying rice seed purity based on hybrid machine learning algorithms
基于混合机器学习算法的水稻种子纯度识别新方法
使用深度学习架构从原始数据中提取重要特征
利用深度CNN模型自动提取水稻种子图像的特征
深度CNN模型(两个主要步骤:特征提取和分类)包含多个块
因此我们的目标不仅是应用从最终块中提取的特征,还包括网络内部的其他块
两种体系结构 : VGG16 ResNet-50
VGG16 :VGG模型,一种CNN模型,包含13个卷积和池化层,3个全连接层
VGG16架构包括五个主要模块,可以有五个选择来获取从每个块提取的特征
从网络的块1和块2提取的特征的数量相当大,导致用于存储和计算的显著资源
因此,只从最后三个块中提取特征
前两个块包括两个卷积层,每个卷积层后面是Max池化层
后三个块包含三个卷积层,每个卷积层后面是Max池化层
卷积滤波器3×3 最大池2×2
如图所示
ResNet-50
从ResNet-50第5阶段的三个块中提取的三组特征被输入到用于水稻种子分类的ML算法中
该模型共包括50层,使用快捷方式绕过一个或多个层。
这些层分为五个主要阶段
1×1卷积的作用是减少然后增加输入的维数,3×3卷积用于提取特征
如图所示
使用机器学习算法对提取的特征进行分类
决策树,DT
随机森林,RF
极端随机树 ( 额外树 ),ET
最近邻算法,K-Nearest Neighbors, KNN
逻辑回归,LR : 是一种统计方法,用于解决二元分类问题,其结果为“是”或“否”决策。
支持向量机,SVM : 是一种有监督的学习算法,其目标是找到最优超平面,使每个类中最接近的数据点之间的间隔最大化
实验使用Google Colab Pro,由Tesla T4 GPU和Persistence-M 15 G Diver版本510.47.03提供支持
六个越南水稻品种:BC 15, Huong thom 1, Nep 87, Q 5, Thien uu 8, Xi 23
越南北部
所有的种子都单独包装和贴标签,每个品种约300粒种子
使用CMOS图像传感器彩色相机(NIKON D300S)拍摄这些种子的照片
将照相机固定在距放置稻米样品的平面400mm的距离处。
实验任务是执行二进制分类
六个文件夹 : 包含六个水稻种子品种的标记图像
每个文件夹中的若干图像被选择并标记为阳性样本
从另外五个文件夹中随机挑选图像并标记为负面图像
选择负样本的数量,使其几乎等于正样本的数量
将这些图像混合并放入一个新的文件夹中,该文件夹标有阳性样品的水稻种子的名称
因此,创建了对应于六个数据集的六个文件夹,每个文件夹包含来自被标记为阳性和阴性样品的六个品种的水稻种子的图像
如图显示了每个文件夹中阳性和阴性样本的数量
为了确保不同分类方法的公平比较,固定测试集和训练集,并应用的袋外技术来估计泛化误差
即每个数据集以67%和33%的比例进一步随机分为训练集和测试集
仅使用深度卷积神经元网络进行实验,用训练集对VGG 16和ResNet-50网络进行训练,性能差
VGG 16 只从最后三个块中提取特征,如图为使用这些模块输出的拟议方法的准确度
在ResNet-50的第5阶段中从三个块中提取的三组特征被馈送到用于水稻种子分类的ML算法
结论:所提出的混合方法的性能优于仅使用深度CNN模型或机器学习模型
其中从VGG 16的块3提取的特征和SVM算法的组合提供了最佳性能
达到了99%的最高准确
摘要
1.介绍
2.相关工作
3.数据收集
4.提到的方法 4.1.用于特征提取的深度学习
4.1.1.VGG16
4.1.2. ResNet-50
4.2. 机器学习算法
4.2.1. 决策树, DT
4.2.2.随机森林,RF
4.2.3.额外树,ET
4.2.4.最近邻算法,K-Nearest Neighbors, KNN
4.2.5.逻辑回归,LR
4.2.6.支持向量机,SVM
5.实验和结果 5.1.实验设置
5.2.深度学习方法的性能
5.3.使用VGG16网络的所提出方法的性能
5.4.使用ResNet-50网络的所提出方法的性能
6.讨论
7.结论