IEEE TC | 论文荐读!先验知识+GCN!DFSTGCN:嵌入先验知识的双反馈时空图卷积网络方法,用于轴承滑移评估

本期荐读论文:

Aeroengine Bearing Time-Varying Skidding Assessment With Prior Knowledge-Embedded Dual Feedback Spatial-Temporal GCN

本期推文的内容概要

本期推文将介绍一种嵌入先验知识的双反馈时空图卷积网络方法(Dual Feedback Spatial-temporal Graph Convolutional Network,DFSTGCN)。这项研究发表于《IEEE Transactions on Cybernetics》期刊。

轴承滑移是限制航空发动机朝着超高速、低摩擦和轻量化方向发展的主要因素。与典型的轴承故障相比,轴承滑移的分析面临更大的挑战,因为它具有较弱的信号特性、显著的时变特征以及多因素耦合影响。因此,充分利用多源信号以增强滑移特征并捕捉时变特性至关重要。荐读的论文提出了一种嵌入先验知识的双反馈时空图卷积网络(DFSTGCN)用于滑移评估。与现有的邻接矩阵构建策略不同,该论文基于多种先验知识(包括动态模型、结构动力学和专家经验)描述多源信号之间的相关性。此外,DFSTGCN被设计为同时关注时变滑移数据的空间和时间依赖性。具体而言,采用包括预测误差比率和不确定性损失函数在内的双反馈机制,以提高滑移预测模型的泛化性能。该策略在不同工作条件下的有效性得到了验证。

论文的创新点主要有以下几点:

1)基于多种先验知识设计的邻接矩阵构建策略:该策略结合了动态模型、结构动力学和专家经验,可以有效减少对标注样本的依赖,并准确描述多源异构信号之间的相关性;

2)DFSTGCN能够丰富时变滑移数据的特征提取:采用多分支空间和通道压缩激励(MSCSE)机制与条件MSCSE(CMSCSE)机制进行多尺度特征自适应融合,同时变分推理方法可以有效处理符合不同分布的滑移数据;

3)提出了双反馈机制以增强轴承滑移预测模型的泛化性能:采用预测误差比率自适应调整权重系数,同时预测损失函数将不确定性信息融入训练过程。

问题的背景

轴承滑移作为导致航空发动机轴承故障的主要早期故障模式,近年来受到了广泛关注。轴承滑移行为可能加速轴承磨损,并降低转子系统的旋转精度,对于在极端恶劣环境下工作的航空发动机而言,滑移问题尤为重要。传统的轴承滑移评估方法主要包括滑移诊断和预测,但现有方法在航空发动机中的应用受到了工作条件变化、柔性转子特性等因素的影响,导致其准确性和实用性不足。随着多传感器信息融合技术的发展,利用多源信号来增强弱信号特征已成为提升滑移检测与预测准确性的有效手段。通过融合来自多个传感器的数据,可以有效提高诊断精度,尤其是在时间变化条件下对复杂数据结构的处理。然而,传统的深度学习方法通常无法有效描述复杂结构数据之间的关系,尤其是在时间变化的工作条件下,无法充分利用多源异构信号的信息。因此,图神经网络(GNN)因其在处理复杂图结构数据方面的优势,成为近年来的研究热点。尽管现有的GNN方法已经取得了一些进展,但大多数方法在邻接矩阵的构建上仍然高度依赖标签数据,并且在面对噪声和无关特征时,性能会受到显著影响。因此,如何充分利用先验知识,而不是仅依赖标签数据,成为了提升图神经网络性能的一个关键问题。

荐读论文解决的主要问题包括:

  • 忽略时间变化的影响:传统的图卷积网络(GCN)方法主要侧重于空间依赖性,未能有效考虑时变数据的时间依赖性,而时间依赖性在轴承滑移的诊断和预测中尤为重要,尤其是在多变的工作条件下;

  • 对标签样本的依赖性过强:现有的许多基于图卷积网络的方法在邻接矩阵的构建上依赖于标注数据,这限制了其在缺少标签样本的情况下的应用。尽管一些方法通过对抗训练减少了对标签样本的依赖,但邻接矩阵的构建仍然需要大量的标注数据;

  • 缺乏对不确定性的有效捕捉:现有的空间-时间图卷积网络(STGCN)方法在处理不确定性方面存在不足,无法有效地捕捉局部和全局多尺度的不确定性和故障特征,这限制了其在实际应用中的有效性;

  • 噪声和无关特征的干扰:由于轴承滑移信号本身具有较弱的信号特性,传统方法难以从复杂的多源异构信号中提取有效信息,这使得现有方法在信号噪声较大时的诊断精度较低。

针对这些挑战,荐读的论文提出了一种基于多种先验知识的邻接矩阵构建策略,并设计了一种双反馈时空图卷积网络(DFSTGCN),以更好地处理时变滑移数据,并有效提高轴承滑移预测的泛化性能。

方法的概述

提出的整体框架如图 1 所示,主要包括邻接矩阵构建模块、DFSTGCN 模块和轴承滑移评估模块。轴承滑移评估包括滑移诊断和预测。首先,收集多源异构信号,包括转子偏转、转子扭矩、振动加速度和滚 cage 重心轨迹,这些信号与轴承滑移行为密切相关。其次,将这些多源异构信号输入到转子系统邻接矩阵构建模块,通过结合多种先验知识来获得准确的相关性描述。先验知识包括动态模型、结构动力学和专家经验。然后,在 DFSTGCN 模块中,采用 MSGCN 和贝叶斯门控注意力时序卷积网络(Gated-ATCN)来全面分析时变滑移信号的空间和时间依赖性。最后,基于设计的损失函数对网络进行训练,以获得轴承滑移诊断和预测结果。具体而言,双反馈机制通过引入预测误差比和不确定性信息来实现滑移预测。

图1 所提出的方法框架

(一)邻接矩阵构建模块

准确描述多源异构信号之间的相关性至关重要。所收集的信号类型和测量点的分布如图 2 所示。六个测量点被设置在转子系统上,以收集与轴承滑移行为相关的多源信号。研究重点是轴承 No.3 的滑移率,其类型为双件内圈角接触球轴承。

图2 转子系统中测量点的分布

与依赖原始数据或其统计特征相似性的传统构建方法不同,荐读的论文提出了一种基于多种先验知识的邻接矩阵构建策略。具体而言,先验知识包括动态模型、结构动力学和专家经验

1)动态模型知识**:**采用基于刚体元素(RBE)的轴承-转子系统动态建模方法,该方法能够在相同工况下 生成与实验响应信号高度相似的仿真响应信号。通过分析动态模型中变量的分布位置,基于动态模型知识得到邻接矩阵。轴承-转子系统的动态模型是通过结合轴承、支撑和转子的有限元模型获得的。

2)结构动力学知识:通过模态测试可以获得转子系统不同模态阶次对应的模态形状,转子系统的振动和变形在单一方向上耦合。为了验证这一结论,采用皮尔逊相关系数计算转子偏转、振动加速度和轴承笼质心轨迹在同一方向上的相似性。

3)专家经验知识**:**以往的研究表明,主轴转速与振动加速度信号密切相关,这一结论同样适用于轴承滑移问题。为了验证这一结论,采用皮尔逊相关系数计算主轴转速与轴承振动加速度信号之间的相似性。结果表明,主轴转速与振动加速度之间存在显著的耦合关系。根据上述分析,基于专家经验知识的邻接矩阵Ae得出。

(二)双重反馈时空GCN模块

为了提高轴承滑移的诊断和预测精度,提出的DFSTGCN用于提取多源异构信号的时空依赖性,如图3所示。DFSTGCN主要包括基于MSGCN的空间卷积块和基于贝叶斯Gated-ATCN的时间卷积块。首先,将多源异构信号输入到MSGCN中以提取空间依赖性。然后,将MSGCN提取的特征输入到贝叶斯Gated-ATCN中以分析时间依赖性。最后,通过MSCSE模块整合贝叶斯STGCN在不同尺度上的输出,从而实现对多源数据在时变工作条件下的时空依赖性的全面分析。

图3 设计的DFSTGCN结构

总结与思考

基于收集的多源信号和DFSTGCN,完成了复杂时变工作条件下航空发动机轴承的滑移诊断和预测。针对信号弱、时变特性显著、多个因素耦合影响的故障,荐读的论文提出了一种有效的时空特征提取策略。该策略主要包括在硬件层面收集大量多源数据,并在软件层面构建高性能的时空网络。充分利用先验知识,减少对标注数据的依赖,并提出了双反馈机制来优化网络参数,提高滑移预测精度。所提策略的有效性和优越性已得到充分验证。

作者指出,未来,动态STGCN将成为研究方向,因为静态邻接矩阵在分析时变数据的时空依赖性方面存在局限性。同时,基于丰富的滑移机制分析构建物理信息网络也十分重要。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值