摘要:智能农业技术和大数据被越来越多地运用于农业生产,为农业生产效率的提升、成本的降低以及农产品质量的改善等方面提供了全新的解决思路。该文对其理念、特征、结合方式、案例分析、存在问题及挑战、推广战略等作了概述,希望能对相关领域研究及实践有所帮助。通过制定行之有效的推广策略,确保数据安全和隐私,强化人才培养和管理等措施,可望进一步促进智能农业技术和大数据在农业生产上的推广应用,助力农业现代化发展。
关键词:智能农业技术;大数据;农业生产
伴随着科学技术的不断进步,智能农业技术和大数据对农业生产起到了重要的促进作用。本文旨在通过对智能农业技术及大数据在农业生产中的应用与融合,对应用推广存在问题及面临挑战等方面进行论述,并提出相应推广策略,希望能够对相关方面的研究及实践有所帮助。
1
智能农业技术与大数据在农业生产中的概述
1.1 智能农业技术的概念与特点
智能农业技术是将信息技术、智能设备和农业生产有机融合在一起,从而达到准确、高效和可持续发展现代农业体系。智能农业技术以数据精确性、操作智能化为核心。该技术采用传感器、无人机和自动化控制系统等智能化手段,并通过农业生产各个环节进行实时监测和数据分析,助推作物生长,病虫害预防和资源配置优化,大幅提高农业生产管理水平和决策质量。
1.2 大数据的概念与特点
大数据汇聚大量信息资源,涉及天气、土壤和作物生长模式。它具有很强的处理与分析能力,能在纷繁复杂的资料中找出规律,预测趋势并提供决策依据。大数据具有规模大、种类多、处理速度快、应用范围广等特征。农业上可通过分析历史与实时数据,优化种植策略、提升风险管理能力以达到精准农业的目的。
1.3 智能农业技术与大数据在农业生产中的结合
伴随着科学技术的发展,智能农业技术和大数据密切结合在一起,给农业现代化发展提供了强有力的手段。大数据对农作物的生长需求及存在的问题进行分析,智能农业技术依此对其进行准确的调节。比如在对病虫害进行预测之后,智能农业系统就可以及时对灌溉,施肥或者是防治的措施进行调整,从而降低损失。这一组合提高了生产效率与品质,促进了农业朝着可持续与环境友好型的方向转变。智能农业,大数据等技术在种植管理,生产监控,市场预测等方面都显示出了极大的潜力[1]。
2
智能农业技术与大数据在农业生产中的案例分析
2.1 案例选取与背景介绍
选取中国东部某模范农业企业作为调研对象。该公司利用本地农业资源并引进先进技术建立数据系统,对作物生长、土壤湿度及气象变化等进行实时监测。通过对大数据的分析,系统给出了农作物的最优生长方案、市场需求预测和资源的优化配置[2]。
2.2 案例分析与结果
企业利用智能农业技术和大数据分析实践证明,技术创新和应用大大提高了农业生产效率和产出。企业通过精准农业管理的推行,可以精准地把握作物生长过程中的各个环节,明显减少资源浪费。大数据分析也有助于企业对市场需求进行准确的预测,避免出现过度生产、库存积压等问题。农作物品质改善与产量提高直接推动企业收益提高,也给当地农户带来更多的就业机会。另外,该模型的推广对于地方农业产业结构优化与可持续发展也具有积极促进作用,显示出智能农业技术与大数据分析相结合对于现代农业发展所具有的巨大作用。
3
智能农业技术与大数据在农业生产中的问题与挑战
3.1 技术推广难题分析
由于信息不对称、培训投入不到位等因素,农民对于新技术接受程度不高,导致技术很难落到田间地头。资金限制,尤其是金融支持不足的区域。智能农业设备成本之高,一般农户无法承受。技术支持服务不到位,造成用户遇有问题解决不了,从而影响了用户采纳新技术的愿望。基础设施不足尤其是偏远地区加大了技术普及困难[3]。
3.2 数据安全与隐私保护问题
智能农业下,海量数据采集、存储与应用面临泄露风险。农户敏感信息如果得不到适当保护就会遭到误用。在数据归属及利用权益方面存在着严重问题,知识产权定义模糊给农户和企业之间权益保护带来了难度。技术平台也存在安全漏洞,如果受到黑客攻击会造成大范围数据泄漏。政策制定中平衡效率与安全是个难题,需考虑技术进步与个体权益保障。
4
智能农业技术与大数据在农业生产中推广策略
4.1 技术推广策略
就智能农业技术和大数据农业普及而言,关键在于建设及教育,培训和实践演示于一体的综合性策略框架。切实普及智能农业,其核心是为不同区域、作物以及农业实践水平农民开发定制化教育方案。另外,要与各地农业大学、研究中心等结成合作伙伴,确保智能技术不断更新并得到技术支持。通过实地演示、研讨会等形式,使农民对智能农业技术有了直观的了解与把握。增强实用性研究、加强农业决策系统建设、运用先进数据分析工具对作物病虫害进行预测、通过智能化管理系统实现资源优化配置等是技术推广中必不可少的重要环节。
4.2 数据安全与隐私保护策略
在数据安全及隐私保护上,需要制定严格政策对农业大数据进行保护,在保证合规性和数据安全的前提下,建立并完善数据管理制度,运用加密技术来保护数据传输与存储过程的安全性,在对数据访问实行严格权限控制的前提下,保证了只有被授权的用户才能够获取到相关资料。加强农民个人信息保护,并定期开展数据安全培训以增强农民个人数据保护意识,同时使其认识到共享数据可能带来的好处和危险。
5
结语
将智能农业技术和大数据运用于农业生产前景广阔,同时面临许多挑战。通过制定行之有效的推广策略,确保数据安全和隐私,强化人才培养和管理等措施,可望进一步促进智能农业技术和大数据在农业生产上的推广应用,助力农业现代化发展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。