Cherry Studio搭建本地知识库,让DeepSeek R1发挥最大实力,彻底告别硬件限制!

今天我们——借助硅基流动的 API 接口,让你轻松接入DeepSeek R1模型,体验满血复活版R1的强大功能。

今天给大家介绍一个新的工具,Cherry Studio,一款聚合主流大语言模型服务的桌面工具。它通过直观的可视化界面和远程API接口,实现了跨平台调用各类模型,既降低了对本地硬件的依赖,又大幅提升了使用效率,为大家搭建高效知识库提供了全新思路。

一 下载安装

打开Cherry官网:https://cherry-ai.com/download

选择适配自己操作系统的版本进行下载。

默认安装就可以,安装完成界面如下:

二 选择DeepSeek R1模型

1、配置模型服务,把硅基流动中申请的 API 密钥添加进去。

没有申请过的可以在API秘钥下方点击这里获取密钥,进入硅基流动官网。

点击创建API密钥即可。

没注册的可以用我这个邀请码注册,双方各获得2000万Tokens。够玩一阵了。

邀请码链接:https://cloud.siliconflow.cn/i/U9FociIz

没注册过的登录首页后,点击界面左侧API 密钥。

选择新建密钥,输入密钥描述后点击新建密钥。

点击自己刚才新建的密钥就可以复制了,保存好。

2、在下方添加DeepSeek R1模型:deepseek-ai/DeepSeek-R1。

也可以点击下方管理按钮找到DeepSeek模型直接添加。

3、测试连通性,点击检查按钮进行测试,看到检查按钮变成对钩就是测试通过了。

看到检查按钮变成绿色对钩。

三 搭建本地知识库

1、添加嵌入模型。点击管理按钮,选择嵌入模型,可以把这几个都添加进去。

确认后可以看到我们之前添加嵌入式模型了。

2、添加本地知识库。点击左侧知识库按钮,添加本地文档。

3、填写知识库名称,选择嵌入模型。

4、上传本地文件,支持多个类型知识,包括文件、目录、网址、网址、笔记等等。

我这里上传了一个三体全集,出现对钩就是处理完了。

四 使用知识库

1、在聊天窗口选择知识库图标,选中之前创建的知识库,如本例为test。

2、可以在聊天区域询问有关知识库的问题了。一定记住要先选中本地知识库呀。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

内容概要:本文档详细介绍了 DEEP SEEK 的本地部署及其与私有知识库整合的具体步骤。主要包括两大部分:Ollama 平台的使用方法和 DeepSeek R1 模型的安装指导。Ollama 是一种能够便捷部署深度学习模型(尤其是大型语言模型)的工具,它支持多种操作系统并在命令行中执行相应操作以完成从下载、配置直至实际使用的全过程。文中针对不同硬件条件给出了具体配置推荐,并逐步讲解了从安装 Ollama 到运行特定大小版本 DeepSeek 模型(如 1.5b 至 70b),再到设置 API 键连接云端服务以及最后利用 Cherry Studio 构建个人专属的知识库的一系列操作指南。同时附上了多个辅助资源如视频教程、在线演示平台链接以便更好地理解和学习整个过程。 适合人群:适合有一定技术背景且想探索本地部署人工智能模型的初学者或是希望通过本地化部署提高效率的研发团队。 使用场景及目标:一是帮助用户了解并掌握在本地环境中配置高性能 AI 工具的全流程操作;二是使用户能够根据自己拥有的计算资源情况合理挑选合适的模型大小;三是通过集成私有知识库为企业内部提供定制化的问答或咨询系统,保护敏感数据不受公开访问威胁。 其他说明:考虑到安全性和稳定性因素,作者还提供了应对潜在风险如遭遇网络攻击时选用可靠替代源——硅基流动性 API 来保障服务持续稳定运作,并强调在整个实施过程中应谨慎处理个人信息及企业关键资产以防泄露事件发生。此外,提到对于更高级的功能例如基于 Ollama 实现本地知识库还有待进一步探讨和发展。
### CherryStudio Ollama 本地知识库安装配置使用教程 #### 安装准备 为了顺利搭建基于CherryStudio和Ollama的本地知识库环境,需先完成基础组件的安装。访问Ollama官方网站获取最新版本的ollama客户端[^3]。 ```bash # 访问并下载 ollama 客户端 https://ollama.com/ ``` 接着通过命令行工具执行特定指令来拉取所需的深度学习模型`deepseek-r1`以及文本嵌入模型`nomic-embed-text`: ```bash # 下载 deepseek 模型 ollama run deepseek-r1:1.5b # 获取 nomic 文本嵌入模型 ollama pull nomic-embed-text ``` 对于Cherry Studio客户端,则可通过其官方网址获得最新的安装包进行安装。 ```bash # 访问 Cherry Studio 并下载对应平台的应用程序 https://cherry-ai.com/ ``` #### 配置过程 一旦上述软件都已成功安装,在启动之前还需要做一些必要的初始化工作以确保各部分能够协同运作良好。这通常涉及到指定所使用的AI模型路径、定义数据存储位置以及其他可能影响性能表现的关键参数设定等操作。具体步骤可以参照文档说明或按照提示逐步完成设置流程[^2]。 #### 使用指南 当一切就绪之后就可以开始利用这套系统来进行各种自然语言处理任务了。比如可以通过上传文件至本地服务器建立专属的知识图谱;也可以直接输入查询语句让机器理解上下文含义从而给出精准的回答等等。值得注意的是,由于采用了先进的算法和技术手段,因此整个交互体验将会更加流畅高效[^1]。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值