Excel真的要被革命了!想象一下有成千上万的实习生帮你处理一张表格的情景!
你敢想象每张电子表格里的每一行每一列,甚至每一个单元格都是一个单独的智能体吗?
这种“超神”级别的表格AI,甚至微软谷歌的Doc都没有做到。但却被一家融资200万美元的小团队做到了。
近日,一家名为Paradigm的AI公司,在X上推出了他们的研发新品,这是一个全新的AI驱动的电子表格,每分钟可以填写 500 个单元格,甚至可以让电子表格直接用来生图,再也不必使用Photoshop!
00后AI版整顿职场
Paradigm团队希望利用AI为每个单元格赋能,以重新定义职场社畜的表格使用体验。不得不说,看着几百个单元格正在为你补充信息的时候,真的有满满的愉悦感!
值得一提的是,这家公司的创始人Anna Monaco,刚刚从宾夕法尼亚大学毕业。那她想更新表格工具的愿望,不正是一种科技版的“00后整顿职场”吗!
而在看完Paradigm的演示视频后,网友们也折服了,连连惊呼:这款产品的创新给办公效率带来了无限可能。
那么,Paradigm真的这么惊艳吗,怎么做到的?
Paradigm的宣传视频很有风格,广告开头的小哥使用着复古的台式电脑,以讽刺现在流行表格工具的落伍和陈旧。
在上面的宣传视频中,Paradigm通过一个用户场景,展示了产品强大的AI搜索、分析和整理的能力。
演示者新建了一个Paradigm电子表格,然后通过自然语言交互,一句“Generate a list of top Al engineers based on GitHub”的prompt,就能指示AI查找GitHub上活跃的工程师,并按活跃度顺序将其主页列在表格中。——这还没完,表格还根据自己搜索到的数据,提供了建议的数据维度,“粉丝数”“现在任职的公司”都给安排的明明白白。
根据创始人Monaco在X上的公告帖子,“Paradigm的数据收集速度比手动快1000倍,平均每分钟能填充500个单元格。”
用户可以进一步通过Paradigm的AI智能体编辑和增强电子表格,点击添加新列,并用自然语言输入所需信息类别——例如,结合从LinkedIn、GitHub、Twitter/X等平台收集的数据总结技术栈——然后Paradigm将自动执行操作、获取信息并排列。
正如Monaco在X帖子中所说,“Paradigm的真正力量在于其规模:想象一下有成千上万的实习生同时为你工作。”
视频接着展示了表格的分析功能,使用他们上传的团队数据库,将潜在的工程候选人与他们当前团队进行比较并找出联系,还添加了另一列,将每位工程师的资历和经验与职位描述进行比较,并根据匹配程度进行1到10的评分。
一个很贴心的开挂设计是,这些维度都可以通过自然语言轻松的修改。例如在制作初创企业名单时,Paradigm推荐返回创始人的领英主页链接,但只需将“URL”改成“Summary”,表格就能返回领英主页的情况概括了……简直是打工神器,对不对?
生成的总结还可以要求理想的长度,在案例中演示者希望用3句话为其概括创始人的情况,于是就得到了下图这样的……几百个答案!
另外,你还可以通过这张表格给联系人群发邮件,并且发布的内容可以根据表格的信息维度灵活“定制”,在编辑邮件的时候,关于“名字”“职位”之类的信息都会替换成每位收件者的情况。这个功能同样让人惊呼人工智能的魅力!
最后,Paradigm可以进行数据的深入分析,分分钟搞定职场“小作文”。
在已有的公司名单的表格中,Paradigm能够进行风险分析的操作,并且按照风险的严重程度提供列表,还能针对性地提供避免风险的策略。
每一个单元格的分析和策略都是一篇短文的长度,但AI几分钟就可以搞定了!
据外媒《财富》报道,Paradigm的软件使用基于闭源及开源的生成式AI模型(包括OpenAI的GPT-4o和Meta的Llama家族)构建自己的AI智能体,来检索网络以获取用户所需的信息,并自动填充电子表格单元格。
可以说,单元格级别的智能彻底刷新了我们对于AI表格想象的天花板!
谷歌、斯坦福、麦肯锡都在使用
当然,Paradigm的单元格智能体也有着大模型天生难以解决的问题:比如幻觉和数学错误问题。比如,它也会错误计算单词“strawberry”中“r”字母的数量。
不过,瑕不掩瑜,Monaco透露道,该公司已经有来自Google、斯坦福大学、贝恩公司和麦肯锡的数百名早期用户,起价为每月500美元。目前,它正在其网站paradigmai.com上通过等待名单接受新用户。
对于企业老板们而言,这次Paradigm的推出意义重大,特别是在依赖大量数据处理的行业,如咨询、招聘和销售等。通过集成Paradigm类似的工具,将重复性任务自动化和提高数据准确性,将带来成本、决策和人力资源的巨大收益。
创业公司来头如何?
Paradigm目前获得了由Y Combinator、Soma Capital和Pioneer Fund投资的200万美元(相对较小的)种子轮融资,此外,Dropbox联合创始人Arash Ferdowsi、LangChain联合创始人Harrison Chase、Intercom创始人Eoghan McCabe,以及Diagram创始人兼CEO Jordan Singer也参与了投资。
表格AI,编程之外更大的赛道!
生成式AI带来的新办公革命,来到了新的阶段。
如果说目前大热的AI编程工具是投资人普遍看好的AI原生应用,那么以表格AI为代表的面向打工人的AI辅助办公工具则是一个市场更大的创业方向。不止软件,甚至运营、销售、咨询、营销、财务等领域都将迎来新的办公协作的流程范式。
Paradigm提出了一种全新的产品构思理念:以电子表格的基本概念为中心,将大量智能体放在用户的指尖。
国内AI表格:飞书、WPS新进展
视线拉回国内,大家可以注意到电子表格领域,飞书和WPS就不得不提,它们也有自己的AI打法。
昨天飞书新发布了搭载AI功能的新一代多维表格,其新推出的多维表格数据库表,主打一个大容量+BI。这让飞书多维表格的单表容量突破了100万行,仪表盘也可统计1000万行数据,均为全球同类产品中最高。在全新的强大性能下,即使在飞书多维表格中计算10 万行、100 列公式这样复杂的数据,仍然能在5 秒内便获取业务结果。
飞书多维表格还发布了全新一代仪表盘,通过飞书多维表格数据库的计算能力,由多维表格行列数据生成的仪表盘,增加了大量计算、图表组件编组、统计分析等功能,界面也可对标全球顶尖 BI 系统。
此外,飞书多维表格还发布了多个AI功能,AI 智能分析仪表盘可一键获取仪表盘数据背后的问题与变化,还可自动调用公式、一键生成自动化群推送等。
精密的权限管理方面,也是飞书的一大亮点。每个不同表格使用人看到的数据、单元格、仪表盘等均会因为权限不同而显示不同,并且能够按照不同的条件收获动态同步。这也是目前最为精细的一套权限管理体系。
WPS在表格方面,在小编看来主打的是**“分析公式流”,**近日WPS推出了WPS Office for Linux 12 个人版,功能也有不少升级,对于表格方面,新增了AI写公式功能、新增ARRAYTOTEXT等若干函数,新增动态数组、优化数据筛选、导出功能、查找对话框支持排序、粘贴图片时支持内嵌到单元格等,都是非常细节但实用的能力。
不过话说回来,编程、表格只是一个开始,AI重塑办公赛道,只会涌现越来越多的玩家,就像Paradigm一样,既不是微软,也不是谷歌,但却成为了突然出现的AI表格黑马。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。