大模型面经——关于大模型幻觉问题的深化理解

本篇来讲具体的幻觉问题的度量方法与缓解方案,来具体解决某些应用场景下的问题,例如:

  • 应用于医疗垂直领域时如何判断大模型生成的内容是否存在幻觉?

  • 应用于文档生成领域时如何判断生成内容与参考材料之间是否一致?

下面是一个本篇的快捷目录。

1. 幻觉问题如何量化

2. 如何缓解幻觉问题

3. 大模型在哪些问题上最容易出现幻觉

4. 幻觉一定有害吗?

一、幻觉问题如何量化

1. 应用于垂直领域时

应用于垂直领域时,由于存在一些领域内比较经典的命名实体词汇以及经典的实体关系三元组,因此量化幻觉问题可以基于这一点。

举个例子,如果是医疗领域大模型,一般各大研究院都会积累有一个相关知识库或知识图谱。当询问大模型糖尿病治疗的药物有哪些,问答过程之间可能关联到的实体与三元组类型有如下可能:

  • 实体

症状——糖尿病

症状——高血压

药物——胰岛素

  • <头实体,关系,尾实体>三元组

<糖尿病,推荐药物,胰岛素>

<糖尿病,关联症状,高血压>

那么由此就可以对大模型生成结果的幻觉进行量化了,这里推荐两种方法。

1)命名实体误差

命名实体(NEs)是“事实”描述的关键组成部分,那么可以利用NE匹配来计算生成 文本与参考资料之间的一致性。这种方法直接评估生成答案中实体词是否属于知识图谱。

直观上,如果一个模型生成了不在知识图谱中的实体,比如模型输出“糖尿病推荐的药物是健胃消食片”,那么它可以被视为产生了幻觉(或者说,有事实上的错误)。

2)利用信息提取系统

此方法使用信息提取模型将大模型生成内容的知识简化为关系元组<头实体,关系,尾实体>;并与从知识图谱中提取的元组进行比较。

2. 应用于文档生成时

这种方法跟提供的参考材料直接相关,理论上来说,提供的参考材料质量越高越详尽,那么这种量化方法就越准确。

1)蕴含率

定义为被参考文本所蕴含的句子数量与生成输出中的总句子数量的比例。为了实现 这一点,可以采用成熟的蕴含/NLI模型。

2)基于外置的问答系统

此方法的思路是,如果生成的文本在事实上与参考材料一致,那么对同一个问题, 其答案应该与参考材料相似。也就是说,我们可以通过问大模型一些参考材料中隐含的事实,然后基于大模型生成的答案来验证大模型的幻觉问题。

具体而言,对于给定的生成文本,问题生成模型会创建一组问题-答案对。接下来,问答模型将使用原始的参考文本来回答这些问题,并计算所得答案的相似性。

上面的话有点绕,我们来举个例子,也就是我们会训练一个输入是参考材料,输出是问题-答案对的问题-答案对生成模型,那么接下来:

  • 假设我们要问大模型的prompt:
prompt:已知糖尿病一般使用胰岛素降血糖,请问是否还有其它药物适用于糖尿病?
  • 将上述prompt输入训好的问题-答案对生成模型,得到如下结果
模型生成结果``   ``问题:糖尿病一般用什么降血糖?``答案:胰岛素。``   
  • 将上述生成的问题输入大模型,在计算大模型生成答案与上述问题答案的相似性即可得到结果。

二、如何缓解幻觉问题

理论上来说,只有创建高质量无噪声的数据集才是最关键的解决方案;但清洗、验证大规模数据,还有保证各个来源数据的质量难度太大了;因此多数论文还有一些工业界落地还是会去探索一些“治标不治本”的其他方法,下面列举一些比较实用性比较高的:

1. 通过使用外部知识验证主动检测和减轻幻觉

  • 论文:A Stitch in Time Saves Nine: Detecting and Mitigating Hallucinations of LLMs by Validating Low-Confidence Generation

  • 原理:

作者发现了两个问题:

1) 幻觉的生成是会传播的,比如一句话出现幻觉,后续生成的文本可能也会出现幻觉甚至更严重。这意味着,如果能够“主动”检测并减轻幻觉,那么也可以阻止其在后续生成的句子中的传播。

2)logit输出值(输出词汇表上的概率分布)可以用来获取幻觉的信号。具体地说,可以计算一个概率得分,当这个得分很低时,模型更容易产生幻觉。因此,它可以作为幻觉的一个信号, 当得分很低时,可以对生成的内容进行更具体的信息验证。

  • 方法

检测阶段:首先确定潜在幻觉的候选者,即生成句子的重要概念。然后,利用其logit输出值计算模型 对它们的不确定性并检索相关知识。

减轻阶段:使用检索到的知识作为证据修复幻觉句子。将修复的句子附加到输入(和之前生成的句 子)上,并继续生成下一个句子。这个过程不仅减轻了检测到的幻觉,而且还阻止了其在后续生成的句 子中的传播。

2. 修改解码策略

  • 论文:Factuality Enhanced Language Models for Open-Ended Text Generation

  • 原理:

作者认为,采样的随机性对生成句子的后半部分比生成前半部分影响更大,因此对事实性的损害也比在句子的开头更大。

因为在句子的开始没有前文,所以只要它在语法和上下文上是正确的,大模型就可以生成任何内容。然而,随着生成的进行,前提变得更为确定,候选单词会更少,从而导致句子更容易生成不符合事实的结果。

  • 方法

引入了事实核心采样算法,该算法在生成每个句子时动态调整“核心”p。

在事实核心采样中,生成每个 句子的第t个标记的核心概率pt为

其中,

  • λ是top-p概率的衰减因子,随着生成的token数量t 的增加,逐渐衰减p 的取值;

  • ω是概率的下限衰减,为了避免p 衰减后过小,设置一个lower bound;

  • p-reset :当一个句子生成完毕后,p 的值会因为t的增加而变得很小,当生成新的句子时,期望p 能够恢复到原始的值

3. 采样多个输出并检查其一致性

  • 论文:SELFCHECKGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models

  • 原理:

这篇论文的主要思想是:如果模型真的掌握某个事实,那么多次生成的结果应该是相似的且事实一 致的;相反,如果模型在胡扯,那么随机采样多次的结果会发散甚至矛盾。

  • 方法

从模型中采样多个response(比如通过变化温度参数)并测量不同response之间的信息一 致性,以确定哪些声明是事实,哪些是幻觉。

信息一致性可以使用各种方法计算,比如可以使用神经方法计算语义等价(如BERT Score)或使用IE/QA-based方法。

三、大模型在哪些问题上最容易出现幻觉

1. 数值混淆:当LLM处理与数字有关的文本,如日期或数值时,容易产生幻觉。

2. 处理长文本:在需要解读长期依赖关系的任务中,例如文档摘要或长对话历史,模型可能会生成自 相矛盾的内容。

3. 逻辑推断障碍:若模型误解了源文本中的信息,它有可能产生不准确的结论。因此,模型的逻辑推 理能力至关重要。

4. 上下文与内置知识的冲突:模型在处理信息时,可能会过度依赖于预训练阶段获取的知识,而忽略实际上下文,导致输出不准确。

5. 错误的上下文信息:当给定的上下文包含错误信息或基于错误的假设时(如:“为什么高尔夫球比 篮球大?”或“氦的原子序数为什么是1?”),模型可能无法识别这些错误,并在其回答中产生幻觉。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 6
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值