论文链接:
https://arxiv.org/pdf/2308.07891
代码链接:
https://github.com/isekai-portal/Link-Context-Learning
简介
从上下文中学习新概念并提供适当响应的能力在人类对话中至关重要。尽管当前的多模态大语言模型(MLLM)和大语言模型(LLM)正在大规模数据集上进行训练,但以免训练的方式识别看不见的图像或理解新概念仍然是一个挑战。情境学习(ICL)探索免训练的小样本学习,鼓励模型从有限的任务中“学会学习”并泛化到未见过的任务。本文提出了链接上下文学习(LCL),强调“因果推理”来增强 MLLM 的学习能力。LCL 通过显式强化支持集和查询集之间的因果关系超越了传统的 ICL。通过提供因果关系的演示,LCL 引导模型不仅辨别类比,而且辨别数据点之间的潜在因果关联,这使 MLLM 能够识别看不见的图像并更有效地理解新概念。为了促进对这种方法的评估,文中引入了 ISEKAI 数据集,专门包含为链接上下文学习而设计的未见过的生成图像标签对。
图 1.链接上下文学习的演示对话。在向模型呈现一对看不见的图像和新颖的概念后,改进模型获得了在整个对话过程中学习和保留所获得知识的能力,而普通 MLLM 无法提供准确的答案。
研究动机
MLLM 从演示中学习的主要方法被称为上下文学习,其中模型在接触一些输入标签对后在下游任务上显示出显着的改进。然而,当前的 MLLM 从上下文学习中获得的好处非常有限,因为重点主要是引导模型在从元任务“学习”之后获得处理新任务的能力。然而,即使元任务中提供的答案全部错误,模型的性能也不会受到影响。因此,MLLM 从演示中“学到”的仍然是以特定格式回答问题,而不是理解图像-标签对之间的因果关系。
为了使 MLLM 能够更多地关注图像和标签对之间的因果关系,Frozen 方法将不同的标签绑定到已知图像。然而,当 MLLM 遇到图像和标签都看不见的全新场景时,就会出现重大挑战。在这种情况下,从演示中提取潜在的因果关系并根据新发现的知识做出准确的预测仍然是一个未解决的难题。
图 2.链接上下文学习与上下文学习之间的区别。上下文学习涉及为演示提供不相关的任务,而链接上下文学习的演示和推理阶段之间存在直接的因果关系。
如图 2 所示,当前 MLLM 中的情境学习强调从因果无关的演示中受益。然而,对于链接上下文学习,演示和最终任务是因果关联的。(例如,如果在演示中将“苹果”重命名为“橙色”,则模型应在推理过程中将苹果称为“橙色”。)有了这种能力,MLLM 可以以灵活的方式支持小样本学习。
论文贡献
-
链接上下文学习:引入了一种新的因果相关的小样本学习设置,其中 MLLM 面临的挑战是从正在进行的对话中吸收新概念,并保留这些知识以准确回答问题。在链接上下文学习下,使 MLLM 能够从演示中掌握源和目标之间的因果关系。
-
ISEKAI 数据集:由于 MLLM 并非完全看不到大多数现实世界的数据,因此本文发布了一个具有挑战性的数据集,其中引入了新的图像概念对,用于评估 MLLM 的性能。
方法
文中提出链接上下文学习(LCL),赋予 MLLM 理解对话中潜在因果关系并处理看不见的图像和概念的能力。与 ICL 主要侧重于启发具有各种不同任务的模型不同,LCL 更进一步,通过授权模型在源和目标之间建立映射,从而提高其整体性能。
链接上下文学习的主要限制和区别
上下文学习是指:给定查询输入,模型应从一组候选答案 中选择预测得分最高的答案x,以支持集 S 为条件,该支持集由来自各种任务的多个输入标签对组成,其中 。(查询和S的样本应该属于不同的任务。)
从另一个角度来看,上下文学习可以表示为免训练的少样本学习,因为它将少样本学习的训练阶段转变为演示输入对于大型语言模型。注意到 ICL与 FSL 一致,其中演示(训练)阶段和推理(查询)阶段的任务是不同的。
链接上下文学习(LCL)代表了一种免训练且因果链接的小样本学习的形式。在这种方法中,提供了支持集 S,以及来自查询集 Q 的查询样本 x,其中数据对来自支持集与查询集有因果关系。该模型的任务是根据查询和支持集之间的因果关系来预测答案。
将链接上下文学习引入 MLLM
提出了一种新的训练策略来微调 MLLM。这种方法旨在使模型能够有效地从上下文中掌握因果关系。这种新的训练策略使 MLLM 能够在需要推理和理解因果关系的任务中表现出色,从而扩大他们的能力范围并提高他们的整体表现。
训练数据集
ImageNet1k 通常用于图像分类任务,通常在整个数据集上训练模型以增强其跨所有类别的识别能力。相比之下,在 LCL 的训练配置中,文中仅从每个类别中随机选择有限数量的样本。然后,为每个类别排列一组相似度递减的相关类别,称为“邻居”。具体来说,采用 CLIP 来计算训练数据集中不同类之间的相似度。首先,从每个类别中随机选择 100 张图像,并计算每个类别的平均图像特征。随后,对所有类的文本名称进行编码以获得其对应的特征向量。最终,计算不同类对之间的加权相似度,包括图像到图像、图像到文本和文本到文本的相关性。对于特定类别,根据相似性对所有其他类别进行排序,并将它们划分为 N 个区间。然后,在每个区间内,随机选择类别来构造一组总数为 N 的“邻居”。
训练策略
为了使 MLLM 理解支持集和查询样本之间的因果关系,以及支持集中输入标签对之间的因果关系,文中构建正负对来促使模型从比较中学习。令支持集表示为 。根据样本之间的相关性,可以将支持集重新定义为 ,其中每个 作为代表 S 中样本簇的原型。这些原型捕获了本质关系以及 S 内样本之间的相似性。给定查询 x,训练 θ 来最大化可能性:
其中θ表示语言模型的参数。视觉编码器的参数在训练期间被冻结。
[2-way] 策略:训练 MLLM 进行二值图像分类,其中。训练类集表示为 ,随机采样一个类 作为正类,其中它的邻居类集 是与 最相似的类,而 是最不相似的)。然后应用硬负挖掘策略,以概率 从 中采样负类 。请注意,此设置固定为 16 个镜头进行训练。
实验结果
图 4. 与 OpenFlamingo、Otter 之间新图像理解结果的定性比较。
图 5.ISEKAI 数据集概述:该数据集完全由生成的图像组成,其中来自“ISEKAI World”的图像在现实生活中不存在,而来自“Real World”的图像来自现实。
表 1.ISEKAI 从零次到 16 次的定量评估,以准确度衡量。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。