作者来自瑞士日内瓦的RAM Active Investments的Systematic Equities Team。论文探讨了如何对大型语言模型(LLMs)进行微调,以利用财经新闻流来预测股票回报。股票回报预测对于量化投资任务,如投资组合构建和优化,是基础且重要的。
Fine-Tuning Large Language Models for Stock Return Prediction Using Newsflow
https://aclanthology.org/2024.emnlp-industry.77.pdf
作者提出了比较仅编码器(encoder-only)和仅解码器(decoder-only)的LLMs,因为它们以不同的方式生成文本表示。这些不同表示对回报预测的影响是一个尚未解决的问题。论文比较了两种简单的方法,将LLMs的token级表示集成到预测模块中。
-
来自LLMs的token级嵌入的聚合表示通常可以产生增强长期和短期投资组合性能的回报预测。
-
在相对较大的投资领域中,基于解码器LLMs的预测模型导致更强的投资组合,而在较小的领域中,没有一致的胜者。
-
从LLMs的文本表示中派生的回报预测是构建投资组合的强信号,表现优于传统的情绪分数。
unsetunset论文出发点unsetunset
近年来,随着自然语言处理(NLP)技术的进步,文本数据在量化投资中的使用显著增长。特别是,LLMs在各种语言理解和生成任务中表现出色。
量化投资依赖于从市场价格、经济指标、财务文本等多种数据源中提取定量特征或信号,以构建和优化投资组合。
传统的财经新闻应用于选股涉及多步骤的提取和验证过程,包括制定数值特征(如情绪、流行度等),开发特征提取过程(如训练财务情绪分类模型),并通过统计分析或构建预测模型来验证提取特征的预测能力。
LLMs生成的文本数值表示(或嵌入)能够捕捉语义关系,这些表示可以自然地作为预测任务的特征。
大模型与量化投资
LLMs的出现为使用文本数据进行量化投资预测任务提供了新的强大方法。仅编码器模型(如BERT和DeBERTa)专注于学习输入文本的上下文嵌入,而仅解码器模型(如GPT-3和Mistral)则通过预测序列中的下一个token来生成文本。
LLMs在大量文本数据上进行预训练,以学习通用的语言模式。提示技术(prompt technique)是通过设计特定输入来引导预训练的LLM产生所需输出,而无需修改LLM的参数。微调技术则调整预训练LLM的参数,以适应特定任务。
最近的一些工作使用LLMs作为特征提取器,从文本中获得预测信号。例如,通过微调预训练的LLMs来提供更准确的财务情绪分析,或者通过提示从财经新闻和价格历史中提取因子。
unsetunset论文思路unsetunset
问题建模
-
投资宇宙:假设一个由一组股票 组成的投资宇宙,其中 代表股票索引。在量化投资中,股票选择过程基于定量标准从宇宙中选择一个子集作为投资组合。
-
股票选择过程:随着市场条件和各种信息的变化,股票选择过程会定期(例如,每周、每月等)重复执行,以更新或重新平衡投资组合。
-
LLMs基础回报预测模型:模型包括一个文本表示模块和一个预测模块。目标是通过联合微调预训练的LLM 和训练一个密集层 来实现方程 $ \hat{r}{s,t+\ell} = f \circ g(X{s,<t}) ,其中 X_{s,<t} 是在回顾时间窗口 W $ 内可用的新闻文本。
设计方法
-
LLMs的分类:LLMs可以分为三类:仅编码器、仅解码器和混合编码器-解码器。这些LLMs将文本转换为高维向量表示,但它们的不同预训练目标导致具有不同含义的文本表示。
-
仅编码器与仅解码器LLMs:仅编码器LLMs(如BERT和DeBERTa)主要基于掩码语言建模进行预训练,而仅解码器LLMs(如GPT-3和Mistral)则通过预测序列中的下一个token进行预训练。
-
瓶颈与聚合表示:由于LLMs输出token级别的向量表示,为了获得编码序列的表示,瓶颈表示的思想是在微调期间推动LLMs将序列信息压缩到单个向量表示中。另一种简单的替代方法是允许预测模块聚合所有token的表示,例如通过平均或注意力机制。
具体实现
实验中使用了一种仅编码器LLM DeBERTa和两种仅解码器LLMs,Mistral-7B和Llama3-8B基础模型,并使用均方误差(MSE)作为损失函数。
unsetunset实验与对比unsetunset
实验数据
-
使用了2003年至2019年的公司级财经新闻流数据,这些数据由一家金融数据供应商提供。每条新闻都有一个属性,包括新闻主要涉及的公司标识符。
-
同时,研究者们拥有北美(NA)、欧洲(EU)和新兴市场(EM)三个投资宇宙的数据集。
模型思路
-
构建长期投资组合时,选择预测排名在前9%(第9个十分位数)的股票。
-
构建长短仓投资组合时,选择预测排名在前9%(第9个十分位数)和后1%(第0个十分位数)的股票。
-
所有投资组合中的股票均等权重。
-
通过月度再平衡来评估投资组合的表现,并比较不同LLMs构建的投资组合,并与基于FinBERT和FinVADER的情感分析构建的情感投资组合进行比较。
评价指标
-
报告了与下游场景一致的三个十分位数指标:十分位数RMSE、十分位数精度和十分位数回报。
-
对于投资组合回测,报告了累积回报图表和测试期间的年化回报和夏普比率等性能统计数据。
结果分析
- 瓶颈与聚合表示:通过十分位数RMSE、精度和回报比较了三种LLMs在北美宇宙中的瓶颈和聚合表示。结果显示,聚合表示模型通常产生更高的回报,有利于长期投资组合,除了Llama。
- 编码器与解码器LLMs:比较了编码器和解码器LLMs在北美宇宙中的适当表示,即DeBERTa和Mistral的聚合表示,以及Llama的瓶颈表示。解码器LLMs(Mistral和Llama)在前9个十分位数产生高回报,在后1个十分位数产生低回报,从而领先于长短仓投资组合。
- 预测基础与情感基础投资组合:比较了基于预测的投资组合与传统基于情感的投资组合。基于预测的投资组合在回报和夏普比率上优于基于情感的投资组合。
unsetunset论文总结unsetunset
-
来自LLMs的token级嵌入的聚合表示通常产生增强投资组合表现的回报预测;
-
在相对较大的投资宇宙中,基于解码器LLMs的预测模型导致更强的投资组合,而在较小的宇宙中,没有一致的胜者;
-
从LLMs的文本表示中派生的回报预测是构建投资组合的强信号,表现优于传统情感分数。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。