引言:技术趋势的指路明灯
德勤最新发布的《Tech Trends 2025》报告为我们描绘了一幅未来技术发展蓝图。这份技术趋势报告的核心主题无疑是人工智能(AI)。如同电力之于工业革命,AI正在成为数字经济的基础设施。从空间计算到量子加密,从硬件突破到核心系统现代化,AI贯穿其中,推动了技术的跨越式发展。在这篇文章中,我们将深入探讨德勤识别的关键技术趋势,并展望未来几年可能带来的变革。
趋势一:AI无处不在
人工智能的存在感正迅速从显性转向隐性。正如我们不会思考电流如何驱动灯泡一样,AI正在成为生活的无声基础。德勤预测,未来的AI将悄然优化交通、个性化医疗健康、提升教育效率等。AI不仅仅是技术,它正在变成一个"生活之网",为我们编织出更加智能、直观的世界。
核心要点:
-
AI将融入城市规划、医疗健康、教育等多个领域。
-
人们无需直接与AI交互,而是体验到更加高效、智慧的环境。
-
生成式AI、代理型AI等新形态将成为主要推动力。
趋势二:空间计算的中心舞台
空间计算是将物理世界和数字世界无缝融合的一项技术,通过实时仿真、增强现实(AR)和虚拟现实(VR)等形式,为企业和消费者带来全新的体验。比如,制造业可以通过空间计算进行虚拟设计和测试,医疗领域的医生可以利用数字孪生技术深入患者的身体进行诊断。
核心创新:
-
实时仿真成为关键应用,支持复杂场景测试。
-
AI将进一步增强空间计算的互操作性,推动更自然的交互。
-
技术挑战包括数据孤岛、标准化不足和管道建设问题。
趋势三:AI的下一步发展
大型语言模型(LLMs)已经掀起了热潮,但它们并非万能药。德勤指出,未来的AI将转向更小型、专用、多模态和任务导向的模型。这种转变不仅减少了资源消耗,还使AI能够更高效地解决特定问题。
未来方向:
-
小型语言模型(SLMs):针对特定任务优化,减少资源浪费。
-
多模态AI:整合文本、图像、音频等多种输入输出,拓展应用场景。
-
代理型AI:实现任务的自主执行,例如财务报告生成或客户支持自动化。
趋势四:硬件的回归
过去十年,软件主导了技术创新,但随着AI对计算资源的需求激增,硬件再次成为焦点。高性能芯片、神经网络处理单元(NPU)等技术正在改变计算的未来。
硬件革命:
-
AI芯片市场预计到2027年将达到1100亿美元。
-
嵌入AI芯片的设备,如笔记本电脑,将为知识工作者提供离线AI能力。
-
数据中心能源消耗问题需要通过可持续能源和高效硬件来解决。
趋势五:IT的角色扩展
AI正在重新定义企业IT的角色。从代码生成到自动化测试,IT部门不再是单纯的支持角色,而是企业创新的核心驱动力。
转型重点:
-
IT部门将通过AI提升基础设施、工程、运营和人才管理等五大支柱。
-
"人类参与"的模式使IT团队从控制者转变为协作者。
-
公民开发者和AI驱动的自动化将加速企业数字化转型。
趋势六:量子时代的加密新数学
量子计算的崛起对网络安全构成了巨大挑战。传统加密技术可能被破解,这迫使企业必须尽快采用后量子加密方案。
关键风险:
-
量子计算可能在未来5到20年成熟,对现有加密技术构成威胁。
-
企业需要尽早采用新兴加密标准,以避免数据泄露。
-
这场"Y2K式"的技术变革要求快速行动和全面准备。
在现代语境中,“Y2K式”变革用来描述需要大规模协调和快速应对的技术挑战。例如,德勤报告中提到的量子计算威胁到现有的加密方法,这就要求企业及早部署后量子加密技术,以避免数据泄露等风险。这种转变类似于Y2K时期的应对方式:系统性、广泛性且具有时间紧迫性。
趋势七:核心系统现代化
核心系统是企业运作的中枢神经,而AI的引入正在彻底改变它们的架构。通过重新设计流程,企业可以实现更智能、更高效的运作。
现代化路径:
-
自动化日常任务,简化用户体验。
-
集成AI后,架构复杂性提升,需要更高技术能力支持。
-
投资于技术和人才,构建强大的治理框架。
结论:广度与深度的交汇
技术创新不再局限于单一领域,而是通过交叉点释放更大的潜力。例如,不同技术的融合不仅带来协同效应,还能推动双向增长。未来,企业需要更有意识地跨行业、跨技术协作,以探索新的商业模式和增长点。
未来展望:AI的普适化之路
AI的未来不仅仅是更多、更快,而是无处不在。它将成为一个无形但强大的力量,为企业和个人创造一个更加智能化、协作性和可持续的世界。对于那些能够主动拥抱这些趋势的企业,2025年将是充满机遇和突破的一年。
作为科技领域的观察者和参与者,我们应持续关注这些变化,并积极思考如何在AI驱动的未来中找到自己的角色。这不仅是一场技术的进化,更是一场重新定义人类与技术关系的革命。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。