最近,AI 对话助手 ChatGPT 几乎成了“显眼包”级别的存在。不少朋友惊叹于它能写文章、写代码、答题、写诗,甚至还能聊天“谈人生”!那么,ChatGPT 究竟是如何实现这些能力的?它背后的原理是什么?今天,我们就来一探究竟!
🧠 第一步:它到底在干嘛?——“猜词游戏”!
ChatGPT 最核心的任务其实特别简单:
给它一段话,它要猜出下一个最合理的词。
比如你说:
“我今天特别开心,因为……”
它就要猜:“考试通过了”、“下班早了”、“吃到了好吃的”……
就像你玩填空游戏一样,它在疯狂练习这个游戏,练到近乎满分。
这个“猜词游戏”就是 ChatGPT 在干的事。整个模型只是在猜、猜、猜。
🧠 第二步:它是怎么学会猜的?——“读书一亿本”
想象你是一个超大规模的AI学霸,从小被关在图书馆,天天被要求读书、读对话、读网页。
你读了:
- 几千万网页
- 几千万篇文章
- 无数代码、百科、聊天记录……
每读一句,就玩一次“下一个词猜猜看”的游戏。
读多了,就懂了“语言的潜规则”:
- “心情不好”后面通常会接“因为”
- “Python 打开文件”常常接 “with open(…)”
- “我喜欢的城市是……”后面一定是个地名
它靠“读多了”,学会了“说得像人一样”。
🧠第三步:它怎么处理这些话的?——“注意力聚焦”
你可能担心:那 AI 一句话读了几十词,它怎么知道重点是哪个?
答案是:它有注意力机制(Attention)。
那么什么是注意力机制呢?
Attention 可以理解成“看哪里”。
在一句话里,模型需要知道哪些词对当前预测是关键的。
比如:
“我太困了,因为昨天晚上睡得太晚了。”
模型在预测“晚”这个词时,需要“注意”到“昨天晚上”。
就像人类听人说话时会自动捕捉重点一样,Attention 让模型也能做到这一点。
就像你听人说“他昨天和小李去打球,然后他受伤了”,你下意识知道第二个“他”是“小李”。
ChatGPT 也能“聚焦”到重要的词,来辅助“猜”。
每次预测下一个词前,它都会看看:
“现在上下文里,最关键的词是哪些?”
这就靠 Transformer 架构里的“Attention”机制,模型会计算“你应该关注谁”。
🧠 第四步:它怎么变得更像人?——“人教出来的机器”
前面只是语言模型,它只是会“说得像人”,但不一定“说得好”。
OpenAI 做了一个关键优化步骤:人类反馈强化学习(RLHF)。
怎么做的?
- 几千个真实人类看模型输出结果
- 比如:模型 A 说话礼貌、合理;模型 B 情绪冷漠
- 人工打分:A > B
- 模型被训练成“以后尽量模仿得分高的答案”
这就好比一个学生交作业,老师每次打分,慢慢学生学会“怎么样的答案最受欢迎”。
🧠 5. ChatGPT 的训练流程
它的训练分三步走:
✅ 第一步:预训练(Pre-training)
- 在海量互联网文本上训练(包括书籍、网页、对话等)
- 学习语言的基本规律和表达方式
- 任务是预测下一个词
✅ 第二步:微调(Fine-tuning)
- 使用人工精选数据
- 更加贴合任务,比如问答、对话风格
✅ 第三步:人类反馈强化学习(RLHF)
- 人类对多个模型回答打分
- 用强化学习算法调整模型,让它更“有帮助、更礼貌”
🧠 6. 怎么能让ChatGPT更听话呢?
RLHF =Reinforcement Learning from Human Feedback
简单说,就是:
“人类告诉模型什么样的回答更好,模型学会了怎么迎合这种偏好。”
OpenAI 会让人类给多个模型回答打分,然后用这个“评分机制”训练出更符合人类期望的行为。
这就像老师教学生:“这道题这样答更有逻辑。”
🧠 7. 比如让chatgpt写一段代码?
你说:
“写个 Python 脚本,把文件夹下所有图片压缩成 800px 宽度。”
ChatGPT 会:
- 识别关键词:“Python 脚本”“压缩图片”“800px”。
- 从训练中记得类似需求怎么写。
- 生成类似代码:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。