论文 | TradExpert: Revolutionizing Trading with Mixture of Expert LLMs
一 本文概要
本文研究了如何在金融领域有效应用大型语言模型(LLMs)进行量化交易,特别是解决如何综合来自不同数据源的见解以及整合结构化和非结构化数据的挑战。作者提出了一种名为TradExpert的新框架,采用专家混合(Mixture of Experts, MoE)的方法,利用四个专门的LLM,每个负责分析特定的金融数据源,包括新闻文章、市场数据、阿尔法因子和基本面数据。这些专家LLM的见解随后由一个通用的LLM进行综合,以做出最终的预测或决策。通过特定的提示,TradExpert可以在预测模式和排序模式之间切换,分别用于股票走势预测和量化股票交易。实验结果表明,TradExpert在所有交易场景中均表现出卓越的性能。
二 背景知识
1. 大型语言模型在金融领域的应用
大型语言模型(LLMs)如GPT、BERT等,已经在自然语言处理领域取得了显著的成果。随着金融市场的信息复杂性和数据多样性的增加,LLMs在金融领域的应用变得愈发重要。金融特定的LLMs,如FinBERT、BloombergGPT等,经过在大量金融文本上的预训练,能够更准确地理解金融语言的细微差别。这些模型可以从新闻、报告和经济指标等非结构化数据中提取有价值的信息,为市场预测和决策提供支持。
2. 专家混合(MoE)方法
专家混合(Mixture of Experts, MoE)是一种模型组合技术,通过将多个专门的专家模型组合起来解决复杂任务。每个专家模型都专注于特定的子任务或数据类型,最终的预测结果由一个门控机制或综合模型进行融合。MoE方法在处理多模态数据、提高模型可扩展性和性能方面显示出显著优势,特别是在需要整合多种数据源的应用中,如金融数据分析。
三 本文方法
本文提出的TradExpert框架利用MoE方法,整合了四个专门的LLM专家,每个专家针对不同的金融数据源进行分析,模拟现实世界中专业人士的分工合作。总体流程如下所示:
1. 专家LLM的构建
(1)新闻分析专家
该专家模型专注于分析金融新闻文本,旨在从新闻文章中提取可能影响股票价格的关键信息。通过对新闻内容的理解和情感分析,预测市场可能的反应。为了增强模型的推理能力,采用了“思维链”(Chain-of-Thought, CoT)的方法,使模型能够给出预测结果的推理过程。
(2)市场数据分析专家
市场数据专家负责处理历史OHLCV(开盘价、最高价、最低价、收盘价、成交量)数据。然而,由于LLMs通常处理离散的文本数据,而OHLCV是连续的时间序列数据,作者采用了重编程机制将时间序列数据转换为LLM可处理的文本嵌入。具体而言,利用多头交叉注意力机制,将OHLCV数据映射到LLM的词嵌入空间,使模型能够理解和处理这些数据。
(3)阿尔法因子专家
阿尔法因子专家处理表达式形式的技术指标和因子,这些因子被认为对股票价格具有预测能力。利用LLM对复杂表达式的理解能力,生成每个因子的语言描述,并通过计算因子值,选取对股票走势影响最大的顶级因子,为模型提供量化分析。
(4)基本面分析专家
基本面专家专注于分析公司的财务报告、收益电话会议记录和关键财务指标。由于基本面数据的更新频率较低(通常为季度),该专家模型每季度进行一次预测,提供对公司长期价值和潜在增长的评估。
2. 通用专家LLM的综合
通用专家LLM负责综合上述四个专家模型的分析结果,生成最终的预测或决策。根据不同的任务需求,通用专家LLM可以在以下两种模式之间切换:
(1)预测模式
在预测模式下,通用专家LLM接收各专门专家的总结报告,输出股票价格在未来走势的预测,结果为“上涨”或“下跌”。
(2)排序模式
在排序模式下,通用专家LLM作为比较器,比较两只股票的潜在表现,判断哪一只股票更值得投资。为了实现Top-K的股票排名,采用了一种松弛的基于比较的排序算法,对股票进行两两比较,统计每只股票的胜出次数,最终得到排名结果。
3. 重编程机制的应用
针对时间序列数据与LLM输入格式不匹配的问题,作者采用了重编程机制,将OHLCV数据转换为LLM可处理的文本嵌入。具体过程如下:
令输入数据为 ,其中 为变量数量, 为时间步长。首先,将数据划分为若干嵌入片段,然后通过多头交叉注意力机制,将这些片段映射到LLM的词嵌入空间,公式如下:
其中,、 和 分别为查询、键和值向量, 为缩放因子。最终,得到的嵌入与统计描述相结合,作为市场数据专家的输入。
4. 模型训练与微调
所有专家LLM均基于LLaMA2-7B模型,并通过LoRA机制进行微调。训练过程中,针对每个专家的任务,设计了特定的指令和提示,生成了包含指令、提示和真实响应的训练数据集。通用专家LLM同时在股票走势预测和股票比较任务上进行微调,以提升其在不同模式下的性能。
四 实验分析
1. 实验设计与设置
作者在多个公开的基准数据集(如CIKM18、ACL18、BigData22)和自有的大规模金融数据集上,对TradExpert进行了全面评估。评估任务包括股票走势预测和股票交易模拟。在交易模拟中,使用回测方法,基于TradExpert的排名结果,模拟实际的买入并持有策略,评估模型的盈利能力和风险指标。
2. 关键实验图表
(1)股票交易模拟结果
实验结果显示,TradExpert在年化收益率、夏普比率、年化波动率和最大回撤等指标上,均显著优于传统模型和其他深度学习模型。
(2)消融实验结果
为了验证各专家模型的贡献,作者进行了消融实验。结果表明,移除市场分析专家和新闻分析专家对模型性能影响最大,说明这两个数据源对股票预测至关重要。
3. 分析与总结
实验结果表明,TradExpert在股票走势预测任务中,准确率和马修斯相关系数均超过了其他基线模型。在股票交易模拟中,TradExpert通过排序模式有效地选择了表现最好的股票组合,获得了更高的收益率和更低的风险。此外,作者还讨论了排序算法的选择,证明由于LLM比较器的非传递性,采用更多比较次数的松弛排序算法能够获得更准确的排名结果。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。