一.数据来源
数据说明:数据来源于薪酬网,网址为https://www.xinchou.com/ChineseCollege/Indexes
(注:薪酬指数:在做薪酬之前要做岗位评估,一般从10个维度去衡量岗位综合分数,一般以一千分为基准。毕业生薪酬指数既反映了毕业生成长发展状况,也反映了高校毕业生就业状况、收入变化,对客观分析高校毕业生就业趋势、企业人力资源配置状况具有重要的参考意义)
2020年中国高校毕业生薪酬指数排名(前100)。数据存入csv文件中,每行数据为高校,行末为换行符作为结束;行内数据为该高校毕业生薪酬有关的信息,行内数据用逗号分隔。共103行、10列数据,具体内容如下:
薪酬指数排名 | 学校名称 | 类型 | 所在地 | 是否985院校 | 是否211院校 | 薪酬指数 | 毕业生平均薪酬2020届(工作一年) | 毕业生平均薪酬2018届(工作三年) | 毕业生平均薪酬2015届(工作五年) |
1 | 清华大学 | 理工 | 北京 | 是 | 是 | 86.9 | 9065 | 10818 | 12614 |
2 | 北京大学 | 综合 | 北京 | 是 | 是 | 86.7 | 9042 | 10698 | 13790 |
3 | 上海交通大学 | 综合 | 上海 | 是 | 是 | 86.5 | 9020 | 10673 | 12242 |
4 | 对外经济贸易大学 | 财经 | 北京 | 否 | 是 | 9010 | 11028 | 12861 | |
5 | 北京外国语大学 | 语言 | 北京 | 否 | 是 | 86.3 | 8998 | 10922 | 12316 |
6 | 外交学院 | 语言 | 北京 | 未知 | 未知 | 86.3 | 8956 | 10688 | |
7 | 浙江大学 | 综合 | 是 | 是 | 86 | 8842 | 10461 | 13594 | |
8 | 中央财经大学 | 财经 | 北京 | 否 | 是 | 85.8 | 8810 | 10065 | 12369 |
9 | 上海外国语大学 | 语言 | 上海 | 否 | 是 | 85.8 | 8784 | 10394 | 13616 |
10 | 中国人民大学 | 综合 | 北京 | 是 | 是 | 85.5 | 8771 | 10467 | 11902 |
11 | 复旦大学 | 综合 | 上海 | 是 | 是 | 85.4 | 8746 | 10259 | 12587 |
12 | 同济大学 | 理工 | 是 | 是 | 8737 | 10338 | 12258 | ||
13 | 上海财经大学 | 财经 | 上海 | 否 | 是 | 85.2 | 8705 | 10122 | 11814 |
14 | 北京航空航天大学 | 理工 | 北京 | 是 | 是 | 84.9 | 8669 | 10168 | 12786 |
15 | 国际关系学院 | 政法 | 北京 | 未知 | 未知 | 84.9 | 8660 | 9893 | 12563 |
16 | 华南理工大学 | 理工 | 广东 | 是 | 是 | 84.8 | 8629 | 11813 | |
17 | 中山大学 | 综合 | 广东 | 是 | 是 | 84.7 | 8620 | 9923 | 11899 |
18 | 东华大学 | 理工 | 上海 | 否 | 是 | 84.7 | 8534 | 10231 | 12607 |
19 | 中国科学技术大学 | 理工 | 安徽 | 是 | 是 | 84.7 | 8500 | 9760 | 12281 |
20 | 上海对外经贸大学 | 财经 | 上海 | 否 | 否 | 84.6 | 8454 | 10040 | 12755 |
21 | 上海理工大学 | 理工 | 上海 | 否 | 否 | 84.5 | 8462 | 9549 | 11710 |
22 | 华东政法大学 | 政法 | 上海 | 否 | 否 | 84.1 | 8448 | 9470 | 12693 |
23 | 北京电影学院 | 艺术 | 北京 | 否 | 否 | 84 | 8434 | 10301 | 11464 |
24 | 北京理工大学 | 理工 | 北京 | 是 | 是 | 83.4 | 8423 | 9622 | 12229 |
25 | 广东外语外贸大学 | 语言 | 广东 | 否 | 否 | 83.2 | 8416 | 10271 | 12125 |
26 | 华东师范大学 | 师范 | 上海 | 是 | 是 | 83.2 | 8399 | 9424 | 11910 |
27 | 南京大学 | 综合 | 江苏 | 是 | 是 | 83 | 8392 | 10255 | 12081 |
28 | 北京邮电大学 | 理工 | 北京 | 否 | 是 | 82.8 | 8364 | 10551 | 11884 |
29 | 西安交通大学 | 综合 | 陕西 | 是 | 是 | 82.7 | 8356 | 9930 | 11255 |
30 | 中央美术学院 | 艺术 | 北京 | 否 | 否 | 82.4 | 8355 | 10143 | 11243 |
31 | 北京交通大学 | 理工 | 北京 | 否 | 是 | 82.4 | 8353 | 10224 | 11727 |
32 | 东南大学 | 综合 | 江苏 | 是 | 是 | 82.3 | 8316 | 10094 | 12329 |
33 | 厦门大学 | 综合 | 福建 | 是 | 是 | 81.9 | 8283 | 9886 | 11865 |
34 | 北京化工大学 | 理工 | 北京 | 否 | 是 | 81.8 | 8253 | 9408 | 12226 |
35 | 北京大学医学部 | 综合 | 北京 | 未知 | 否 | 81.8 | 8235 | 9538 | 11674 |
36 | 深圳大学 | 综合 | 广东 | 否 | 否 | 81.6 | 8174 | 9424 | 11579 |
37 | 北京信息科技大学 | 理工 | 北京 | 未知 | 否 | 81.5 | 8131 | 9344 | 11152 |
38 | 北京工业大学 | 理工 | 北京 | 否 | 是 | 81.1 | 8105 | 9482 | 11610 |
39 | 上海大学 | 综合 | 上海 | 否 | 是 | 81 | 8078 | 9889 | 11477 |
40 | 哈尔滨工业大学 | 理工 | 黑龙江 | 是 | 是 | 80.9 | 8014 | 9772 | 10332 |
41 | 天津大学 | 理工 | 天津 | 是 | 是 | 80.8 | 7976 | 9496 | 11287 |
42 | 北京科技大学 | 理工 | 北京 | 否 | 是 | 80.8 | 7957 | 9265 | 11157 |
43 | 大连理工大学 | 理工 | 辽宁 | 是 | 是 | 80.7 | 7953 | 9723 | 11288 |
44 | 中央戏剧学院 | 艺术 | 北京 | 否 | 否 | 80.5 | 7944 | 9612 | 11174 |
45 | 南开大学 | 综合 | 天津 | 是 | 是 | 80.5 | 7919 | 9194 | 11932 |
46 | 北京工商大学 | 财经 | 北京 | 否 | 否 | 80.3 | 7876 | 8733 | 10967 |
47 | 华北电力大学(北京) | 工科 | 北京 | 否 | 是 | 80 | 7854 | 9373 | 10837 |
48 | 哈尔滨工程大学 | 理工 | 黑龙江 | 否 | 是 | 80 | 7851 | 8969 | 11622 |
49 | 西安电子科技大学 | 理工 | 陕西 | 否 | 是 | 80 | 7780 | 8837 | 10658 |
50 | 暨南大学 | 综合 | 广东 | 否 | 是 | 79.9 | 7763 | 9547 | 11397 |
51 | 电子科技大学 | 理工 | 四川 | 是 | 是 | 79.9 | 7714 | 9411 | 11289 |
52 | 上海海事大学 | 理工 | 上海 | 否 | 否 | 79.9 | 7694 | 8868 | 11084 |
53 | 上海第二工业大学 | 理工 | 上海 | 否 | 否 | 79.6 | 7689 | 9522 | 11570 |
54 | 首都经济贸易大学 | 财经 | 北京 | 否 | 否 | 79.3 | 7673 | 8957 | 10176 |
55 | 北京师范大学 | 师范 | 北京 | 是 | 是 | 79.3 | 7636 | 9269 | 10615 |
56 | 大连海事大学 | 理工 | 辽宁 | 否 | 是 | 79.2 | 7573 | 9079 | 11325 |
57 | 汕头大学 | 综合 | 广东 | 未知 | 未知 | 79 | 7528 | 8677 | 11179 |
58 | 浙江工商大学 | 财经 | 浙江 | 否 | 否 | 78.8 | 7494 | 8928 | 10902 |
59 | 中南大学 | 综合 | 湖南 | 是 | 是 | 78.8 | 7466 | 9063 | 10837 |
60 | 北京第二外国语学院 | 语言 | 北京 | 未知 | 否 | 78.8 | 7418 | 9073 | 10613 |
61 | 重庆医科大学 | 医药 | 重庆 | 否 | 否 | 78.8 | 7415 | 8984 | 10218 |
62 | 北京服装学院 | 理工 | 北京 | 否 | 否 | 78.6 | 7401 | 8879 | 10675 |
63 | 北方工业大学 | 理工 | 北京 | 否 | 否 | 78.5 | 7365 | 8555 | 10320 |
64 | 上海电力学院 | 理工 | 上海 | 否 | 否 | 78.4 | 7356 | 9339 | 10926 |
65 | 中国地质大学(北京) | 工科 | 北京 | 否 | 是 | 78.3 | 7348 | 8259 | 10342 |
66 | 上海师范大学 | 师范 | 上海 | 否 | 否 | 78.3 | 7331 | 8525 | 10128 |
67 | 中国青年政治学院 | 政法 | 北京 | 否 | 否 | 78.1 | 7254 | 8564 | 10758 |
68 | 上海工程技术大学 | 理工 | 上海 | 否 | 否 | 78.1 | 7230 | 9572 | 10727 |
69 | 南京邮电大学 | 理工 | 江苏 | 否 | 否 | 77.9 | 7229 | 8329 | 10708 |
70 | 上海中医药大学 | 医药 | 上海 | 否 | 否 | 77.9 | 7228 | 8470 | 10848 |
71 | 浙江财经大学 | 财经 | 浙江 | 否 | 否 | 77.9 | 7188 | 8700 | 10651 |
72 | 南京航空航天大学 | 理工 | 江苏 | 否 | 是 | 77.8 | 7164 | 8769 | 10494 |
73 | 广州美术学院 | 艺术 | 广东 | 未知 | 未知 | 77.7 | 7101 | 8485 | 10178 |
74 | 中国农业大学 | 农林 | 北京 | 是 | 是 | 77.7 | 7075 | 8393 | 9722 |
75 | 中国美术学院 | 艺术 | 杭州 | 未知 | 否 | 77.6 | 7033 | 8431 | 9888 |
76 | 中国民航大学 | 理工 | 天津 | 否 | 否 | 77.5 | 6879 | 8257 | 9685 |
77 | 上海戏剧学院 | 艺术 | 上海 | 否 | 否 | 77.3 | 6755 | 8444 | 10467 |
78 | 南京理工大学 | 理工 | 江苏 | 否 | 是 | 77.1 | 6718 | 8069 | 9738 |
79 | 河北建筑工程学院 | 理工 | 河北 | 否 | 否 | 77 | 6712 | 7675 | 9808 |
80 | 西北工业大学 | 理工 | 陕西 | 是 | 是 | 77 | 6679 | 7648 | 9020 |
81 | 湖南大学 | 综合 | 湖南 | 是 | 是 | 76.8 | 6678 | 8216 | 9663 |
82 | 重庆交通大学 | 综合 | 重庆 | 否 | 否 | 76.7 | 6606 | 7628 | 9537 |
83 | 武汉大学 | 综合 | 湖北 | 是 | 是 | 76.6 | 6589 | 7546 | 9696 |
84 | 上海应用技术大学 | 理工 | 上海 | 否 | 否 | 76.3 | 6569 | 7997 | 9272 |
85 | 中国政法大学 | 政法 | 北京 | 否 | 是 | 76.1 | 6562 | 7368 | 9174 |
86 | 北京建筑大学 | 理工 | 北京 | 否 | 否 | 76 | 6508 | 7970 | 9448 |
87 | 广西大学 | 综合 | 广西 | 否 | 是 | 75.9 | 6508 | 7965 | 9134 |
88 | 江西财经大学 | 财经 | 江西 | 否 | 否 | 75.9 | 6502 | 7705 | 8833 |
89 | 青岛大学 | 综合 | 山东 | 否 | 否 | 75.8 | 6429 | 7627 | 9059 |
90 | 北京语言大学 | 语言 | 北京 | 否 | 否 | 75.8 | 6417 | 7451 | 9998 |
91 | 上海海洋大学 | 农林 | 上海 | 否 | 否 | 75.7 | 6408 | 7738 | 8801 |
92 | 南京艺术学院 | 艺术 | 南京 | 否 | 否 | 75.7 | 6380 | 7288 | 9159 |
93 | 北京林业大学 | 农林 | 北京 | 否 | 是 | 75.4 | 6264 | 7462 | 8998 |
94 | 北京印刷学院 | 理工 | 北京 | 否 | 否 | 75.4 | 6262 | 7412 | 9338 |
95 | 西南财经大学 | 财经 | 四川 | 否 | 是 | 75.1 | 6243 | 7132 | 9788 |
96 | 北京物资学院 | 财经 | 北京 | 否 | 否 | 75 | 6240 | 7899 | 8645 |
97 | 山西大学 | 综合 | 山西 | 否 | 否 | 75 | 6200 | 7297 | 9212 |
98 | 扬州大学 | 综合 | 江苏 | 否 | 否 | 74.8 | 6156 | 7168 | 8832 |
99 | 天津工业大学 | 理工 | 天津 | 否 | 否 | 74.7 | 6164 | 7090 | 8850 |
100 | 江苏大学 | 综合 | 江苏 | 否 | 否 | 74.4 | 6100 | 7002 | 8515 |
-
数据处理
1.读入数据
import pandas as pd
df=pd.read_csv('C:/Users/86182/2020年中国高校毕业生薪酬指数排名.csv',encoding='GBK') #读取csv文件
2.数据规格化、清洗
-
删除两个空行
df=df.drop([8,28])
-
将“是否985院校”,“是否211院校”的两列中的“是”用数值1代替,“否”用数值0代替,“未知”用数值-1代替,并将列表信息存储为newdata.txt
df['是否985院校']=df['是否985院校'].replace('是',1)
df['是否985院校']=df['是否985院校'].replace('否',0)
df['是否985院校']=df['是否985院校'].replace('未知',-1)
df['是否211院校']=df['是否211院校'].replace('是',1)
df['是否211院校']=df['是否211院校'].replace('否',0)
df['是否211院校']=df['是否211院校'].replace('未知',-1)
df.to_csv('newdata.txt',sep=',',index=False)
(3)data1=df.describe()
-
将“毕业生平均薪酬2020届(工作一年)”“毕业生平均薪酬2018届(工作三年)”“毕业生平均薪酬2015届(工作五年)”这三列的列名分别改为“salary2020”“salary2018”“salary2015”
df=df.rename(columns={'毕业生平均薪酬2020届(工作一年)':'salary2020','毕业生平均薪酬2018届(工作三年)':'salary2018','毕业生平均薪酬2015届(工作五年)':'salary2015'})
3.统计分析数据
-
将薪酬指数排名前十的大学信息显示出
-
df3=df.head(10)
-
按照2018届(工作三年)的平均薪酬重新排序(降序),并保存到变量df4里,保存为csv文件(df4.csv)
df4=df.sort_values(by='salary2018',ascending=False) df4.to_csv('df4.csv')
-
计算各大学毕业生的三届学生的平均薪资,并将平均薪酬添加到df中,列名为‘average’
df5=df.iloc[0:101,[7,8,9]] df6=df5.mean(axis=1).round(2).values df['average']=df6
-
筛选出来三届毕业生的平均工资大于10000的学校
df1=df.loc[df['salary2018']>10000]
-
筛选出来2015届毕业生(工作五年)平均工资大于12000的学校
df2=df.loc[df['salary2015']>12000]
-
-
按照省份对所有列进行分类汇总
-
df3=df.groupby('所在地').count()
-
-
df7=df.groupby('类型').count()
-
- 计算薪酬指数与三届毕业生平均薪资的相关性
-
salary1=df['薪酬指数'] average=df['average'] salary1.corr(average)
- 按照是否为985院校和是否为211院校对学校进行分类
-
df8=df.groupby(['是否985院校','是否211院校'])['学校名称'].count()
注:数值0代表‘否’,数值1代表‘是’,数值-1代表‘未知’
- 按照学校类型对平均薪资进行汇总
df10=df.groupby('所在地')['average'].count()
-
三、图表显示
1.根据学校类型的数量画出一个直方图
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
types=[]
for tp in df[u'类型']:
ls=tp.split(',')
for x in ls:
types.append(x)
tp_df=pd.DataFrame({u'类型':types})
fig,ax=plt.subplots(figsize=(9,6),dpi=60)
tp_df[u'类型'].value_counts().plot(kind='bar',ax=ax)
ax.set_xlabel(u'高校')
ax.set_ylabel(u'数量')
ax.set_title(u'各类型高校数量')
-
根据省市的学校数量画出一个直方图
types=[]
for tp in df[u'所在地']:
ls=tp.split(',')
for x in ls:
types.append(x)
tp_df=pd.DataFrame({u'所在地':types})
fig,ax=plt.subplots(figsize=(9,6),dpi=100)
tp_df[u'所在地'].value_counts().plot(kind='bar',ax=ax)
ax.set_xlabel(u'所在地')
ax.set_ylabel(u'数量')
ax.set_title(u'平均薪酬top100各省市高校数量')
-
画出各省市2020届毕业生和2018届毕业生的平均薪酬的折线图
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']='SimHei'#设置中文显示
fig,ax=plt.subplots(figsize=(10,7),dpi=100)
x=df[u'所在地'].value_counts().sort_index().index
y2=df.sort_values(by=u'所在地').groupby(u'所在地').mean()[u'salary2020'].values
y1=df.sort_values(by=u'所在地').groupby(u'所在地').mean()[u'salary2018'].values
plt.plot(x,y2,'go--')
plt.plot(x,y1,'bo--')
plt.title("各省市高校毕业生平均薪酬")
plt.xlabel('省市')
plt.ylabel('平均薪酬')
plt.legend('best')
plt.annotate("change5", xy=('天津',7250),xytext=('天津',8500),arrowprops=dict(facecolor='black',headwidth=4,width=1.5,headlength=4),horizontalalignment='right',verticalalignment='top')
plt.annotate("change13", xy=('江西',7750),xytext=('江西',8900),arrowprops=dict(facecolor='black',headwidth=4,width=1.5,headlength=4),horizontalalignment='right',verticalalignment='top')
-
结论
- 薪资最高的是上海,北京,广东这些一线城市,看来就业城市很重要,想拿高工资还是得去一线。
- 各高校薪酬指数排名前一百的高校中,理工,综合,财经这三类学校的平均薪资都较高。
- 2018届各高校毕业生和2020届各高校毕业生在各省市的平均薪资基本变化不大。
- 工资最高的是清北,2020届毕业也就是工作一年的大学生,平均薪资9000左右,工作三年后工资达到一万一,工作五年后则能达到一万三左右。
- 排前五十的大部分是985和211高校,但也有少部分是双非,但是这些双非学校基本都在北上广。
- 许多人说学外语没前途,其实不然,北京外国语,对外经贸,外交学院这些大学薪资很高。
- 清华毕业一年薪资最高,但五年后就不如北大,复旦甚至外交学院。
- 不管是工作一年、三年还是五年,985学校的薪资都高于211学校,所以尽量上好学校。