光机相互作用的哈密顿量

本文详细探讨了光机相互作用的哈密顿量,介绍了未耦合和耦合时的表达式,并阐述了哈密顿量在机械振子不同量子表示下的形式,包括产生湮灭算符、位移和正交算符形式。重点讨论了真空光机耦合强度g0及其物理意义,以及辐射压力与相互作用哈密顿量的关系。
摘要由CSDN通过智能技术生成


前言

光机相互作用是指光场与机械振子的相互作用,本文介绍光学腔与谐振子的相互作用,参考文献 Aspelmeyer et al. Cavity Optomechanics, 2014

一、哈密顿量与量子表述

未耦合的光场( ω c a v \omega_{cav} ωcav)与机械振子( Ω m \Omega_{m} Ωm)都可由谐振子表示,其哈密顿量表示为 H ^ 0 = ℏ ω c a v a ^ † a ^ + ℏ Ω m b ^ † b ^ (1.1) \hat{H}_{0}=\hbar \omega_{cav} \hat{a}^{\dagger} \hat a +\hbar \Omega_{m} \hat b^{\dagger} \hat b \tag {1.1} H^0=ωcava^a^+Ωmb^b^(1.1)
两者耦合时,腔的共振频率被机械振子的幅度所调制,有 ω c a v ( x ) ≈ ω c a v + x ∂ ω c a v ∂ x + ⋯ (1.2) \omega_{cav}(x)\approx \omega_{cav} +x \frac{\partial {\omega_{cav}}}{\partial x}+\cdots \tag{1.2} ωcav(x)ωcav+xxωcav+(1.2)
保留线性项,并定义单位位移引起的频移为 G = − ∂ ω c a v ∂ x (1.3) G=-\frac{\partial \omega_{cav}}{\partial x} \tag{1.3} G=xωcav(1.3)
G > 0 G>0 G>0表示腔长增加导致频率减小,这与初始时刻腔在共振处是吻合的:腔长增加,共振波长增加,频率减小。
可以推导,腔长为 L L L的光机系统,有 G = ω c a v / L (1.4) G=\omega_{cav}/L \tag{1.4}

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值