
当我们说一个
时间反演对称
什么叫做时间反演对称?任何一本合格的高等量子力学教材[1]中都可以找到详细的讨论和细致的推导分析,这里简单介绍一下其构造思路:
从纯粹的物理角度,或者说实际角度上出发,我们先假定存在一个操作(算符)(记作
由于要在极其任意微小的间隔内皆成立,那么一阶近似应该成立,得到
怎么办?前面是从时间反演这个性质本身出发,后面是我们所期望的优良数学性质,前辈们表示:

然而代价是,我们必须引入一个共轭算符
时间反演算符的两个基本却重要性质
-
对称,即:
.由前面知
从而得到
,两边同时乘以
,将这个式子迭代一次,得到:
,进而发现
通常而言,-1的情况是non-trival并且我们非常感兴趣的。
- Kramers' degeneracy(克莱默简并) :这个简并其实就说了这么一件事,一个态和其时间反演态具有共同的能量本征值(由
我们不难想到),同时一个态和其时间反演态是两个完全不同的态,这需要一点点证明,如下:
.进而,我们可以验证
,最后我们发现 ,
的性质
.这说明态的时间反演态始终和该态始终正交。
和
的对易也同时说明了两态具有相同的能量本征值。这说明具有时间反演对称的体系,其能量本征值至少具有二重简并。
具有时间反演对称的哈密顿量应该具有的性质
要构建时间反演对称的哈密顿量,我们需要分析一下这样的哈密顿量应该具有怎么的性质。
首先,对易关系需要
[注]. 对于可能读到本文的初学者,这里说明一下,本文记号根据布洛赫定理,哈密顿量和能量本征态在k空间内写作
如何构建一个时间反演对称的哈密顿量?
重点来了,根据以上的分析,现在来谈构造一个时间反演对称哈密顿量的简单方法:
假设我们已经有了一个晶体的k空间下的Bulk哈密顿量
这里总共存在“3层自由度”,一层是
我们目前只需要"copy"自由度满足时间反演对称,即在时间反演算符
则耦合项满足的条件为
BHZ模型
前面介绍并且简单分析了二维Chern绝缘体的一个典型的模型:QWZ模型
Yadun:二维陈绝缘体(2D Chern Insulator):Qi-Wu-Zhang(QWZ)模型zhuanlan.zhihu.com
通过以上构造方法::
对耦合
同前面讨论陈绝缘体(QWZ模型)的情况一样,我们通过傅里叶变换将这个哈密顿转化为实空间中的二维具体平移平移对称性的哈密顿量,然后使一个方向保持周期性边界条件,一个方向取有限的格子(从而给出开边界),我们可以画出(不同耦合下的)能带:

上图从左到右依次为
BHZ模型中存在的边缘态是什么?
这个问题之前,我想提出两个问题:“为什么会出现
这是初学者避不开的坎,回答这两个问题贯穿到拓扑绝缘体的两个关键:体带的对称性和拓扑性。在Chern绝缘体中,我们可以通过研究体系的Berry curvature相关的pumped current进而理解边缘导态的存在,进而通过Chern number可以进行对体系拓扑平庸与否进行判断。 然而对应含时间反演对称体系,如果去计算Chern number,会发现(证明)其始终为0(证明待补充)。这不但迫使我们去寻找一个新的拓扑不变量(也就是著名的
End
本文絮絮叨叨地主要介绍了时间反演对称和重要的一些性质,篇幅所限略去了具体构造时间反演算符的过程,以及一个简单的构建时间反演对称哈密顿量的方法,以及构造的一个非常著名的例子:BHZ模型。本系列会继续更新,包括如何理解“对称保护拓扑”这样一件事(二)等。
参[ban]考[yun]文[lai]献[yuan]
- Sakurai - 《Modern Quantum Mechanics》关于时间反演的章节
2.《A Short Course on Topological Insulators: Band-structure topology and edge
states in one and two dimensions》
https://www.researchgate.net/publication/281670885_A_Short_Course_on_Topological_Insulators_Band-structure_topology_and_edge_states_in_one_and_two_dimensions?enrichId=rgreq-d5df835c611e687019dfaa10e143a59b-XXX&enrichSource=Y292ZXJQYWdlOzI4MTY3MDg4NTtBUzozOTY0MzAyODA4MDY0MDVAMTQ3MTUyNzc1MjkwOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdfwww.researchgate.net3. B. Andrei Bernevig, Taylor L. Hughes, Shou-Cheng Zhang.《Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells》.Science 314, 1757 (2006).DOI: 10.1126/science.1133734
4. 物理所戴希老师的文章:
中科院物理所:凝聚态中的拓扑(四):从TKNN到Z2拓扑绝缘体zhuanlan.zhihu.com
2019.2.9更新:增加了BHZ模型的内容,本来写了一篇结合几篇文献专门讲BHZ模型的内容,但是发现有很多东西自己也没有理清楚,所以干脆在这篇文章中补充下就是了。
2019.2.8更新:增加了少许细节