为什么AI研究中的“知识蒸馏“可能是一条“捷径陷阱“? | 大模型当评委!大模型如何革新“人工智能评判“这件事?

大模型领域的发展日新月异,每天都有许多有趣的论文值得深入品读。下面是本期觉得比较有意思的论文:

1、为什么AI研究中的"知识蒸馏"可能是一条"捷径陷阱"?

2、大模型当评委!大模型如何革新"人工智能评判"这件事?

1、为什么AI研究中的"知识蒸馏"可能是一条"捷径陷阱"?

在人工智能的快速发展浪潮中,知识蒸馏技术正以其简单高效的方式,席卷了整个研究领域。这篇名为《O1 Replication Journey – Part 2》的研究论文,深入剖析了这一看似美好的技术路径背后潜藏的深层问题,宛如一面警示镜,映照出当前AI研究生态中令人深思的现象。

论文作者通过对OpenAI O1模型的复制实践,揭示了一个令人警醒的事实:知识蒸馏虽然能快速提升模型性能,但其背后隐藏着严重的技术陷阱。他们发现,仅仅通过从O1模型API中提取数万个样本进行监督微调,就能在美国数学邀请赛(AIME)中超越O1-preview版本。然而,这种看似神奇的"捷径"实则埋藏着深刻的研究隐忧:它不仅限制了模型的根本创新能力,还可能扼杀AI研究者培养基础性思维和解决复杂问题的能力。

这项研究的核心价值,不仅在于技术层面的突破,更在于对整个AI研究生态的深刻反思。作者警示,过度依赖知识蒸馏会导致研究者陷入一个"舒适但危险"的怪圈:不再钻研底层技术原理,转而沉迷于通过prompt工程获得短期性能提升。这种趋势不仅会阻碍技术的长远发展,更可能塑造一代"会用但不会想"的AI研究者,最终阻碍整个领域的根本性突破。

论文最后发人深省地指出,真正的创新不应只追求"what works",更要深入理解"how it works"。对AI研究者而言,保持对基础技术的好奇和钻研,才是推动人工智能向前发展的根本动力。这不仅是一个技术命题,更是一个关乎人类对未来科技认知的重大命题。

论文标题:O1 Replication Journey – Part 2: Surpassing O1-preview through Simple Distillation, Big Progress or Bitter Lesson?

论文链接:https://arxiv.org/abs/2411.16489

2、大模型当评委!大模型如何革新"人工智能评判"这件事?

在人工智能快速发展的今天,一个令人兴奋的趋势正悄然兴起:让大语言模型担任"评判官"。这意味着AI不再只是被动地回答问题,而是能主动、客观地对复杂任务进行评估。这个被称为"LLM-as-a-Judge"的创新方法,正在悄然改变传统的专家评估模式。

传统的人工专家评估存在着明显的局限性:成本高、效率低、主观性强。而大语言模型为这一领域带来了革命性的变革。研究发现,AI评委不仅能处理文本、半结构化数据和多模态内容,还能提供更加一致和可扩展的评估。比如,在奥林匹克数学竞赛的试卷评判和学术论文的同行评审中,大模型已经开始发挥重要作用。

然而,让AI成为可靠的"评判官"并非易事。研究者们提出了一系列策略来提高大模型评估的可靠性,包括改进一致性、减少偏见、提高对不同场景的适应性。他们还设计了专门的基准测试,旨在系统地评估和验证AI评委的稳健性。这些努力不仅为AI技术的发展指明了方向,也为其在现实世界的应用铺平了道路。

值得期待的是,未来的AI评委将变得更加智能和可靠。研究人员正在探索诸如对抗性训练、不确定性量化和人机协同等技术,以确保即便在复杂和具有挑战性的评估场景中,AI也能保持高水平的公正性和准确性。这不仅是技术的突破,更是人工智能向更高智能形态演进的重要里程碑。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值