今天给大家带来AAAI 25最新的大模型论文《Political Actor Agent: Simulating Legislative System for Roll Call Votes Prediction with Large Language Models》
论文链接:https://arxiv.org/pdf/2412.07144v1
1.摘要
通过模拟政治行为者来预测唱票表决已成为定量政治学和计算机科学的一个重点。广泛使用基于嵌入的方法从不同的数据集中生成立法者向量,以预测立法行为。
然而,这些方法经常面临一些挑战,如需要手动预定义特征、依赖大量训练数据以及缺乏可解释性。在灵活的条件下实现更具可解释性的预测仍是一个尚未解决的问题。
本文介绍了政治行为者智能体(PAA),这是一种基于智能体的新型框架,利用LLMs来克服这些局限性。通过采用行为者扮演架构和模拟立法系统,PAA 为预测唱票表决提供了一个可扩展和可解释的范例。
本文的方法不仅提高了预测的准确性,还提供了多视角、人类可理解的决策推理,为政治角色的行为提供了新的见解。
本文使用第 117-118 届美国众议院的投票记录进行了全面实验,验证了 PAA 的卓越性能和可解释性。这项研究不仅证明了 PAA 的有效性,还证明了它在政治科学研究中的潜力。
2.背景
立法行动例如提出、审议和投票表决法案,使政治行为者能够影响国家和社会的发展。
本文主要关注预测立法者唱票表决的问题。理想点模型是用于唱票表决预测的最常用方法之一,它将立法者和法案表示为一维或多维空间中的点
另外一种是使用异质信息图来表示立法者、法案以及上下文知识,包括党派隶属关系、游说、资产等复杂关系。
这些研究使用异质图神经网络生成图中节点的嵌入并预测投票结果。这些方法都将立法者和法案嵌入到向量空间,并使用神经网络或相似性度量来预测结果。
然而,上述基于嵌入的方法表现出若干局限性:
-
预定义特征的局限性:模型的训练仅依赖于预定义的特征,这阻止了自然扩展到新的、未训练的关系。
-
训练数据量:大多数模型依赖于大型数据集才能达到最佳性能,在现实场景中这是不可行的,比如预测新当选立法者的投票。
-
预测的可解释性:基于嵌入的预测缺乏可解释性。
为了解决这些挑战,本文研究基于LLMs的智能体研究成就。通过设计的简档、规划和行动模块,LLMs 智能体可以表现出智能决策行为。如下图所示,通过将政治行为者建模问题重构为构建政治智能体。
3.贡献
-
为政治行为者研究提出了一种新的基于智能体的范式。与基于嵌入的方法相比,本文的立法者模拟角色扮演框架能为相应的下游任务提供更准确、更可解释的结果。
-
为唱票表决预测引入了政治行动者智能体(PAA)。通过设计可扩展的配置文件、多视角规划和模拟立法者行动,大大提高了预测的准确性,并为政治科学研究提供了可解释的决策见解。
-
使用第 117-118 届众议院的投票记录进行了综合实验。实验证明不仅能达到很高的预测准确率,还能提供可解释的政治见解。
4.技术架构
详细介绍了用于唱票表决预测的政治行为者智能体(PAA)框架。如上图所示,该框架包括数据收集、可扩展智能体简档构建、多视角规划模块设计以及模拟立法行动模块的实现。
-
数据收集:从维基百科和国会获取立法法案信息。
-
简档构建模块:构建一个包含个人信息、选区详情、所发起和支持的法案数据及历史投票记录的可扩展智能体简档。此模块被集成到提示中以影响大规模语言模型的设计与行为。简档设计高度灵活,可以综合不同数据源的信息,例如个人基本信息、职业历史、投票记录等。
-
多视角规划模块:受政治科学启发,将投票决策任务分解为三个主要视角——受托人视角(Trustee view)、委托人视角(Delegate view)和跟随者视角(Follower view),辅助智能体进行决策。每个视角都有对应的提示模板,帮助智能体基于不同的政治科学理论进行推理。
-
模拟立法行动模块:引入了“影响机制”,模拟领导者智能体如何影响其他智能体的决策过程。领导者智能体首先根据多视角规划模块进行投票,然后其他智能体在已知领导者智能体决策的情况下做出自己的选择。这种机制能够更细致地模拟真实立法者的决策过程,并有效建模领导人物的影响。
具体来说,领导者智能体包括众议院议长、共和党领袖、民主党领袖、委员会主席和相关党团成员。领导者智能体先根据多视角规划模块进行投票预测,剩余智能体则在知晓领导者智能体决策的情况下做出预测。
5.实验结果
实验设置与方法
为了评估PAA在唱票投票预测中的性能,研究者选择了第117届至第118届美国众议院的投票数据作为实验数据集,覆盖了432位立法者的投票信息。除了法案的投票数据外,还收集了用于构建简档和异质信息图的额外数据,包括最新的维基百科页面、选区信息、法案发起人和共同发起人的信息,以及立法者的推特帖子。
实验选取了五种基线方法进行对比,分别是:
-
ideal-vector:基于词嵌入的多维理想点模型。
-
LSTM+GCN:使用图卷积网络(GCN)生成立法者表示,并使用LSTM生成法案文本表示的图模型。
-
Vote+MTL:结合Twitter数据的图模型,利用关系图卷积网络(RGCN)生成政治人物表示。
-
PAR:结合多种社会背景信息的图模型,将表示模型与专家知识相结合以生成政治人物表示。
-
UPPAM:基于立法者社交网络和法案文本的对比学习框架,使用预训练模型生成政治人物表示。
实验结果
展示了不同分割比例下各方法的准确率和宏平均F1。PAAG(基于GPT-4o-mini的PAA版本)在所有数据集分割中均表现出色,尤其是在宏平均F1上达到了最优结果。
PAAL(基于Llama-3-70B的PAA版本)在宏平均F1分数方面表现尤为突出,这主要是由于三类投票问题(赞成、反对、弃权)中的标签不平衡问题所致。当训练集比例减小时,基于嵌入的方法性能下降更快,而PAA保持了更高的稳定性,尤其适合新当选立法者等数据有限的情况。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。