1 展示效果
从我电脑上找了一本《天池比赛》扫描版PDF,扫描版意思就是全是图片,并且图片清晰度不怎地,如下图所示全书365页:
某页截图:
下面是使用本文介绍的方法,批量处理这个扫描版PDF,选取第十页的提取结果,左侧图是原版,右侧是提取后保存成word的结果:
大家可以对一对,我看了下提取正确率非常高,所以想要处理扫描PDF的可以使用本文方法。
一句话总结下这个解决方案:基于 Qwen2.5-VL-7B 多模态大模型构建智能体,自动读取扫描版 PDF,借助图像多模态逐页理解内容,并按阅读顺序整理输出,最终生成结构清晰的 Word 文档。
这个方案的主要特色:
1)7B模型,消费级显卡完全可以本地运行;
2)基于多模态(Vision-Language)能力理解图片内容,相比传统的OCR识别方法,准确度大大提升;
3)全自动化批量处理,放在后台运行,一本书很快就能转化完。
有些读者跑这样的模型一回,电脑就热的发烫,心疼电脑。还有些电脑没有GPU,跑起来太慢了。
确实也是,在本地跑大模型很耗电脑,没有GPU效率也很慢,最好的方法就是薅一些平台的羊毛,他们提供了远程GPU算力,一般注册刚开始都会送一些券,够用一段时间。
比如腾讯云,gpugeek,阿里云,这些平台都提供了GPU算力,其中gpugeek的算力平时经常用,用起来挺友好,送的券现在还没用完。今天就以他家的这个平台,咱们把扫描版PDF直接转出word来,走起。
2 薅GPU算力
进入gpugeek,如下所示:
https://gpugeek.com
点击右上角登录,进入下面界面,选择创建实例:
选择一个型号,比如24GB显存跑Qwen2.5-VL-7B,足够了:
RTX-A5000, 24G显存,95GB内存:
选择官方镜像,依次选择如下图所示,Miniconda主要为了配置环境:
点击创建后,GPU算力镜像开始创建:
显示运行中,表明镜像创建好了,直接就能开始薅他家的GPU算力了:
然后点击登录:
复制登录指定到命令窗口:
输入密码后,登录到GPU服务器,如下图所示:
使用下面命令查看GPU:
nvidia-smi --list-gpus
如下所示,显示为GPU 0,RTX A5000型号:
3 安装环境
安装torch,transformers等,直接复制下面两行命令执行:
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu121pip install transformers safetensors
\**
如果要处理视频或多模态任务,再安装opencv-python:\*\*``\*\**\*
pip install opencv-python
再安装加速依赖包:
pip install accelerate
以上环境就安装好了,不需要写代码,只需要执行命令。
咱们搞个demo,大家直接复制下面代码,保存为:vl_ocr.py
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessorfrom qwen_vl_utils import process_vision_info# default: Load the model on the available device(s)model = Qwen2_5_VLForConditionalGeneration.from_pretrained( "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto")# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(# "Qwen/Qwen2.5-VL-7B-Instruct",# torch_dtype=torch.bfloat16,# attn_implementation="flash_attention_2",# device_map="auto",# )# default processerprocessor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")# The default range for the number of visual tokens per image in the model is 4-16384.# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.# min_pixels = 256*28*28# max_pixels = 1280*28*28# processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "请用中文描述这张图片的内容。"}, ], }]# Preparation for inferencetext = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True)image_inputs, video_inputs = process_vision_info(messages)inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt",)inputs = inputs.to("cuda")# Inference: Generation of the outputgenerated_ids = model.generate(**inputs, max_new_tokens=128)generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)print(output_text)
然后输入如下命令运行,如下图所示:
因为本地还没有下载过"Qwen2.5-VL-7B"
模型,所以 transformers
框架自动去 Huggingface 下载模型的全部权重文件。model.safetensors.index.json 是模型的索引文件。model-00001-of-00005.safetensors 等这几个是模型的权重分片(大模型通常被切成多个小块,分片下载)。
咱们默认输入如下这个图片,让它理解下这个图的信息:
![img]()![img]()
返回英文了:
咱们修改下代码这里,提示词告诉它使用中文描述:
下面是中文返回结果,如下图所示:
以上描述结果,大家觉得如何,有没有觉得很精准呀。
4 扫描版PDF开始转Word
上传一个300多页的pdf文件到服务器,使用scp命令:
scp -P 41277 ocr_test.pdf root@你的服务器名字(来源文章一开始复制的登录地址)
提示输入密码后,输入文章一开始登录地方的密码,如下图所示:
![img]()![img]()
再安装PDF转Image的包:
pip install pdf2image python-docx
然后安装pdf2image的一个系统依赖包,如下所示:
sudo apt updatesudo apt install poppler-utils
完整代码scanpdf_to_doc.py文件一共89行代码,是的,只需要89行代码就可以实现这样的实用功能:
程序运行后的效果如下图所示:
特意找了难度最高的目录页,因为目录页清晰度很差,但是展示效果如下图所示,没有问题,就连页码也都对齐整了:
限于本文篇幅,以上完整89行源代码文件全部放在下面我的公众号,获取方式回复:智能体
以上就是扫描版PDF转word的完整步骤,所有代码也全部为大家准备好,大家只需实践下就行。
以上方法也不是完美的,我看了下,目前发现只有目录部分转化有些问题,因为目录分为左右两个部分,但是转Word后,只把左侧目录完整转出来了,右侧部分有些丢了未转化,同样方法问了更满血的国外模型也不行,相信未来多模态大模型能搞定。
最终总结
本文章解决了一个大家普遍遇到的问题,就是如何将扫描的PDF书直接转为word,文中介绍了基于 Qwen2.5-VL-7B 多模态大模型,自动读取扫描版 PDF,具有如下特色:
转化准确率高;哪怕一整本扫描的书也能轻松应对;文中全部代码和步骤都开源,确保大家可以复现。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。