摘要
大型语言模型(LLMs)融入药物研发领域标志着一个重大的范式转变,提供了理解疾病机制的新方法,促进了药物发现,并优化了临床试验过程。本综述强调了LLMs在药物开发流程各阶段中的变革性作用。我们研究了这些先进计算模型如何揭示目标与疾病的联系,解释复杂的生物医学数据,增强药物分子设计,预测药物疗效和安全性特征,以及促进临床试验过程。我们的论文旨在为计算生物学、药理学和AI4科学领域的研究人员和实践者提供一个全面的概述,通过提供对大型语言模型(LLMs)在药物研发方面潜在变革性影响的见解。
“语言不过是科学的工具,而词语不过是思想的符号。”
核心速览
研究背景
-
研究问题:这篇文章要解决的问题是如何将大型语言模型(LLMs)有效地整合到药物发现和开发的各个阶段,从而加速药物的发现过程。
-
研究难点:该问题的研究难点包括:如何定义LLMs的类型并将其应用于药物发现和开发的各个阶段;如何评估LLMs在支持下游任务中的成熟度;以及未来LLMs在药物发现和开发中的发展方向。
-
相关工作:该问题的研究相关工作包括专门用于科学语言的LLMs和通用LLMs的研究,这些模型在理解疾病机制、药物发现和临床试验中的应用已经取得了一定的进展。
研究方法
这篇论文提出了将LLMs应用于药物发现和开发各个阶段的方法。具体来说,
-
LLMs的类型:首先,论文定义了两种主要的LLMs类型:专门用于科学语言的LLMs和通用LLMs。专门用于科学语言的LLMs旨在解码科学语言的模式,从而实现对科学数据的原始形式的解释。通用LLMs则训练于多样化的文本信息,能够理解和生成复杂的科学描述语言。
-
疾病机制理解:专门用于科学语言的LLMs可以用于基因组分析、转录组分析和蛋白质靶点分析。例如,DNA-BERT模型通过专门训练在大量的核苷酸序列上,能够有效地解码基因组的“语言”。
-
药物发现:在药物发现阶段,LLMs可以用于化学实验、体外模拟和ADMET预测。例如,Chemformer模型通过预训练和微调,能够在化学反应和反应预测任务中表现出色。
-
临床试验:在临床试验阶段,LLMs可以用于临床实践、患者结果预测和文件撰写。例如,Med-PaLM模型通过编码临床知识,能够在USMLE风格的问答任务中达到人类专家的水平。
结果与分析
-
疾病机制理解:专门用于科学语言的LLMs在基因组分析、转录组分析和蛋白质靶点分析中表现出色。例如,Geneformer模型在心脏肥厚和扩张性心肌病的网络扰动分析中表现出色,成功识别了潜在的治疗靶点。
-
药物发现:LLMs在化学实验、体外模拟和ADMET预测中表现出色。例如,Chemformer模型在化学反应和反应预测任务中表现出色,准确率超过了人类化学家。
-
临床试验:LLMs在临床实践、患者结果预测和文件撰写中表现出色。例如,Med-PaLM模型在USMLE风格的问答任务中达到人类专家的水平,显著提高了临床决策的效率。
总体结论
这篇论文全面探讨了LLMs在药物发现和开发中的应用,提出了将LLMs整合到药物发现和开发各个阶段的方法。研究表明,LLMs在理解疾病机制、药物发现和临床试验中表现出显著的优势。未来的研究方向包括进一步提高LLMs的科学理解能力、解决伦理和隐私问题、减少偏见、提高定量分析能力和多模态处理能力。通过这些改进,LLMs有望成为药物发现和开发中可靠且高效的工具。
论文评价
优点与创新
-
全面的综述:论文全面概述了大型语言模型(LLMs)在药物发现和开发中的应用,涵盖了从疾病机制理解到临床试验的各个阶段。
-
多种模型的深入分析:详细讨论了专门化和通用LLMs在药物发现和开发中的不同应用,展示了它们在不同任务中的潜力。
-
具体案例:提供了多个具体案例,如Geneformer在疾病建模中的应用,Chemcrow在化学实验自动化中的应用,展示了LLMs在实际研究中的成功应用。
-
多阶段评估:对LLMs在不同阶段(理解疾病机制、药物发现、临床试验)的应用进行了详细的成熟度评估,提供了清晰的路线图。
-
未来方向:提出了LLMs在药物发现和开发中的未来发展方向,包括生物洞察力的整合、伦理和隐私问题的解决、公平性和偏见的减少等。
不足与反思
-
局限性:论文提到,尽管LLMs在药物发现和开发中显示出巨大潜力,但在某些领域(如蛋白质目标分析)仍需进一步验证和实验支持。
-
下一步工作:建议未来的研究应更加注重LLMs在真实世界环境中的验证和应用,特别是在化学实验和临床试验中的实际部署。此外,还需解决LLMs在处理长文本数据时的局限性,如上下文窗口限制和模型解释性问题。
关键问题及回答
问题1:论文中提到的专门用于科学语言的LLMs和通用LLMs在药物发现和开发中的具体应用场景有哪些不同?
- 专门用于科学语言的LLMs:
-
基因组分析:如DNA-BERT模型,通过专门训练于核苷酸序列来解码遗传语言,进行基因变异分析。
-
转录组分析:如Geneformer模型,通过将单细胞转录组数据映射到基因序列,进行基因网络分析,识别潜在的治疗靶点。
-
蛋白质靶点分析:如ESM模型,通过分析蛋白质序列,进行蛋白质折叠、结合位点预测和功能注释。
- 通用LLMs:
-
化学实验:如Chemformer模型,通过预训练和微调来进行反应和逆向合成预测,辅助化学实验设计。
-
体外模拟:如AlphaFold系列模型,通过大规模蛋白结构预测,辅助新药设计和分子动力学模拟。
-
ADMET预测:如Molformer模型,通过大规模分子属性预测,筛选具有良好药代动力学特性的化合物。
-
临床试验:如Med-PaLM模型,通过编码临床知识,进行USMLE风格的问答,辅助临床实践和患者结果预测。
问题2:论文中提到的LLMs在药物发现中的具体技术有哪些?这些技术在实际应用中的效果如何?
- 化学实验:
-
技术:使用LLMs生成化学机器人可执行的实验计划,进行高通量筛选和复杂化学反应的预测。
-
效果:如CLARify系统利用GPT-3生成任务计划,准确率高于基线系统,显著提高了自动化化学实验的效率和准确性。
- 体外模拟:
-
技术:使用LLMs进行蛋白质-蛋白质相互作用预测和分子动力学模拟,如AlphaFold系列模型进行高精度蛋白结构预测。
-
效果:AlphaFold-Multimer模型在蛋白质-蛋白质相互作用预测中表现出色,准确率超过传统方法,显著加速了新药设计和分子动力学模拟。
- ADMET预测:
-
技术:使用LLMs进行大规模的分子属性预测,如Molformer模型通过大规模分子属性预测,筛选具有良好药代动力学特性的化合物。
-
效果:Molformer模型在实际应用中表现出色,准确率超过了传统机器学习方法,显著提高了药物候选化合物的筛选效率。
问题3:论文中提到的LLMs在临床试验中的应用有哪些具体案例?这些案例展示了LLMs在哪些方面的潜力?
- 临床实践:
-
案例:Med-PaLM模型通过编码临床知识,进行USMLE风格的问答,辅助医生进行病例诊断和治疗方案制定。
-
潜力:Med-PaLM模型在USMLE风格的问答中达到了人类专家的水平,显著提高了临床实践的效率和质量。
- 患者结果预测:
-
案例:如NYUTron平台利用BERT模型,结合电子健康记录数据,预测患者的住院死亡率、综合共病指数和30天再入院率。
-
潜力:这些模型在处理大规模医疗数据方面表现出色,能够提供准确的预测,帮助医生制定更有效的治疗计划。
- 辅助文档写作:
-
案例:如Patel等人使用GPT-3自动生成出院小结,Shing等人使用提取-摘要技术从临床笔记中生成连贯的摘要。
-
潜力:这些技术显著提高了医疗文档写作的效率和质量,减少了医生的工作负担,提升了医疗服务的整体水平。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。