自驱动实验室 | 看AI如何重构化学合成新范式

人工智能邂逅实验室自动化:金属有机框架的发现与合成新突破

img

前言:金属有机框架(MOFs)因独特可调结构,在能源存储、药物递送、环境修复等领域极具潜力。但它的合成复杂、结构多样,给传统研究带来巨大挑战。如今,人工智能(AI)与实验室自动化的融合,为 MOF 研究开辟了新路径。

img

文章思维导图

一、实验室自动化革新 MOF 研究

img

图1 | 金属有机框架领域中实验室自动化与人工智能的概览

实验室自动化利用机器人技术、软件系统和自动化设备,处理实验室中重复性、耗时或复杂的任务,提升了实验效率、准确性和一致性,在 MOF 研究中发挥着关键作用。

传统的 MOF 合成方法,像水热 / 溶剂热合成等,虽为研究奠定了基础,但存在诸多不足。这些方法耗时费力,易受人为因素影响,导致数据偏差大。在表征和性能评估方面,手工操作效率低、成本高,大规模研究时问题更为突出。

实验室自动化则有效解决了这些问题。它从简单的自动化移液操作,发展为涵盖样品处理、反应控制、数据采集与分析等多环节的集成系统,促进了科研的标准化和可重复性。

二、自动化技术的关键构成

实验室自动化由先进硬件、软件系统和智能机器人组成。硬件系统中,自动化合成工作站是核心。它配备高精度机器人,能精准操作样品,还可按需配置搅拌、加热等模块,确保实验条件精确可控。合成后的表征和评估设备也实现了自动化升级,自动化样品装卸系统大大提高了样品处理效率和一致性。

智能机器人负责样品运输、装卸等任务,实现实验流程无缝衔接。以 ARChemist 系统为例,它能让科学家轻松调整实验装置,适应不同实验需求,提升了实验的灵活性和可重复性。

软件系统方面,高度集成的设备控制系统包含多个功能模块,便于管理。不过,硬件接口标准化问题限制了系统的灵活性和扩展性。为此,SiLA 2 Manager 等操作系统出现,通过标准化和模块化设计,增强了系统集成能力。此外,实验室信息管理系统(LIMS)能自动处理实验数据,促进信息共享与协作,为 AI 驱动的实验优化提供数据支持。

三、高通量实验:自动化的深度应用

实验室自动化为高通量实验(HTE)提供了支撑,HTE 可同时进行多个实验,有效弥补了传统实验方法的不足,为 MOF 研究带来新机遇。

img

图2 | MOF材料的典型高通量表征技术

在 MOF 合成领域,自 2008 年起,HTE 逐渐成为研究的重要工具。以溶剂热合成为例,从单反应器发展到多通道平行合成技术,能同时改变多个反应变量,加速了材料发现进程。像 Yaghi 团队利用 96 孔板进行大量微反应,合成多种 ZIFs 材料,展现了 HTE 的强大实力。

此外,喷雾法、浸渍法、微流控技术、3D 打印技术等多种高通量合成技术不断涌现。这些技术各有优势,如微流控技术可精确控制液体,实现高效合成;3D 打印能制备复杂结构的 MOF 材料。

在表征和评估环节,高通量技术同样不可或缺。自动化粉末 X 射线衍射(PXRD)用于确定晶体结构和纯度,红外检测、核磁共振(NMR)、透射电子显微镜(TEM)等技术从不同角度全面评估 MOF 材料的性质。在评估吸附性能和催化活性方面,高通量评估技术也发挥着重要作用,帮助研究人员筛选高性能材料。

尽管如此,实现 MOF 研究的完全高通量和自动化仍面临诸多挑战,包括合成方法复杂、原材料多样敏感、样品处理困难、设备成本高以及缺乏标准化程序等。

四、人工智能重塑 MOF 研究格局

AI 的发展为 MOF 研究带来了全新模式,从机器学习到深度学习,再到大型语言模型(LLMs),其应用不断拓展和深化。

4.1 AI 发展的关键阶段及其影响

机器学习阶段,研究人员借助算法和统计模型分析数据,预测 MOF 性能、优化设计。但传统机器学习方法在处理复杂大规模数据时存在局限。

深度学习兴起后,基于神经网络的它能处理更复杂抽象的问题。在 MOF 研究中,深度学习被广泛用于性能预测和结构设计,通过构建深度神经网络,从大量数据中学习规律,提升了预测的准确性和设计的创新性。

近年来,基于 Transformer 架构的 LLMs 为 MOF 研究带来新机遇。LLMs 能理解和生成自然语言文本,在 MOF 研究中用于处理文本数据,提取有价值信息。它与深度学习融合,为 MOF 材料的智能设计和优化提供了新途径。

4.2 Transformer 的应用与优势

img

图3 | (a) MOFormer的工作流程。(b) Transformer编码器层的内部结构。© 结合CGCNN和MOFormer的自监督学习设置。(d) 不同模型在QMOF和hMOF数据集上的数据效率比较

img

图4 | MOFTransformer的整体示意图与架构

Transformer 模型凭借自注意力机制在多领域取得突破。它由编码器和解码器组成,通过多头注意力机制、前馈神经网络等组件,有效捕捉数据中的依赖关系。

在 MOF 材料研究中,Transformer 及其变体在性能预测和结构设计方面表现出色。在性能预测上,结合计算化学生成数据,Transformer 能更准确地捕捉材料结构特征,提高预测效率和精度。例如,CrysToGraph 和 GC-Trans 模型借助 Transformer 架构,实现对 MOF 性能的精准预测。

在结构设计方面,MOF 的化学设计空间复杂。理性设计基于专业知识,生成模型驱动的设计则引入随机性。Transformer 架构在处理复杂结构数据时具有优势,能准确捕捉 MOF 各组分间的相互作用。如 Park 等人基于 Transformer 开发的深度强化学习框架,成功设计出对 CO₂亲和力高的 MOF 结构;MOFFUSION 框架结合多种技术,生成高质量的 MOF 结构。

img

图 5 | Uni-MOF框架的示意图解。(a) 预训练流程。(b) 数据生成流程。© Uni-MOF微调流程。(d) Uni-MOF的整体流程。(e) Uni-MOF在大规模数据库中的整体性能。

img

图6 | (a) 生成器采用Transformer编码器-解码器架构。它将金属簇、有机连接点的连接点以及有机连接点的支架(以SELFIES表示)输入编码器。然后,解码器根据输入的支架选择拓扑结构和金属簇,并生成有机连接点。(b) 一个示意图显示了生成器(以及一个权重固定的偏置版本)如何创建MOF表示,在强化学习中平衡利用和探索。© 预测器架构是一个Transformer编码器,它从生成器获取MOF表示。添加了一个密集层,以便从第一个标记(类别标记)预测目标属性。(d) 图表比较了由初始(预训练)生成器生成的MOF与通过三轮强化学习优化的MOF的属性分布,属性值由预测器估计。

4.3 LLMs 在 MOF 研究中的创新应用

LLMs 在 MOF 研究中的应用日益广泛。在信息提取方面,传统方法从文献中提取化学信息困难且低效,LLMs 则改变了这一局面。Yaghi 团队利用 GPT 模型和相关策略,高效提取反应条件数据,为开发预测模型奠定基础。Dagdelen 等人的 LLM-NERRE 方法及 MOF-JSON 模型,能准确提取和处理 MOF 相关信息。

img

图7 | 用于微调GPT-3.5的数据集准备示意图解,以及微调后模型的评估指标

在 MOF 设计上,LLMs 也发挥了重要作用。Yaghi 团队利用 GPT-4 的框架发现新 MOF 材料,通过微调 GPT 模型设计出更优的连接体。Liu 等人开发的 MOFs-LLM,经大量数据训练后,在多项任务中表现出色。Kang 提出的 ChatMOF 系统,能智能处理用户问题,帮助研究人员理解材料性质和行为。

img

图8 | ChatMOF的概念和示意图。(a) 解释ChatMOF的概念图。(b) ChatMOF的示意图。ChatMOF由三个核心组件组成:代理、工具箱和评估器。在接收到人类的查询后,代理制定计划并选择合适的工具箱。随后,工具箱按照提议的计划生成输出,评估器将这些结果整理成最终响应

目前,多数 MOF 相关 LLMs 是通过微调现有模型得到的,完全重新训练的特定领域 LLMs 较少。未来,模型压缩、微调技术改进以及多模态数据整合将推动 LLMs 在 MOF 研究中的进一步发展。

五、自驱动实验室:MOF 研究的未来趋势

自驱动实验室(SDLs)融合了 AI 与实验室自动化,为 MOF 研究带来了全新的研究模式。

5.1 SDLs 的发展与架构

SDLs 源于实验室自动化技术,为应对化学研究挑战而发展。Alan 教授提出的材料加速平台(MAP)与 SDLs 概念相近,专注于材料研究领域。Alan 团队开发的 ChemOS 2.0 实现了实验全流程自动化,并对 SDLs 的自主性进行了分类。目前多数 SDLs 处于 2 - 3 级,虽有 4 级用于简单任务,但 5 级尚未实现。随着技术进步,化学实验室任务的自动化程度将不断提高。

5.2 SDLs 在 MOF 研究中的实践

在 MOF 研究中,SDLs 已取得一定进展。Smit 团队利用机器学习优化 MOF 合成条件,开发的 SyCoFinder 应用助力实验设计。Pilz 团队借助该应用优化合成参数,改善 MOF 薄膜质量。Xie 团队结合机器人平台和贝叶斯优化算法,优化 ZIF-67 合成。Cronin 团队用机器人平台和 XGBoost 算法探索 POMOFs 的化学空间。

近年来,利用 LLMs 和机器人平台优化 MOF 合成条件成为新方向。Yaghi 团队的 ChatGPT 研究小组,结合多种技术,加速了 MOF 合成条件的优化,提高了材料性能。

img

图9 | 合成条件查找器(SyCoFinder)。SyCoFinder被设计用来帮助人类和机器人高效探索化学合成中实验参数的空间。(b) 用于合成Al-PMOF的机器人平台。© 第一代和第二代合成的优化参数和结果

5.3 SDLs 的优势与挑战

SDLs 具有显著优势。AI 在其中主导实验设计和执行,通过深度学习挖掘文献,创新实验方案,加速科学发现。SDLs 实现了实验全流程的自动化和智能化,确保实验高效准确,降低人为误差,保障研究的准确性和可重复性。

不过,在 MOF 研究中,SDLs 仍处于起步阶段。在 MOF 材料的表征和评估方面,实现完全无人自动化还面临困难。未来,需改进硬件设备和样品处理方法,以推动 SDLs 在 MOF 研究中发挥更大作用。

img

图10 | 自动化合成平台的外观。(b) 为移动代理处理定制的NMR机架。© 用于筛选、规模扩展复制和主客体结合实验的启发式决策者逻辑。在此案例中,相对于起始材料的1H NMR峰数量被用作阈值标准。时间线(底部)显示了由人类执行的任务(黑色框)和由自主平台执行的任务(绿色框)

六、融合驱动 MOF 研究新发展

AI 与实验室自动化的融合,为 MOF 研究带来诸多好处。自动化系统可同时管理多个反应参数,实现无人操作,提高实验质量。高通量实验助力材料设计和合成路线优化。实验结果与 AI 模型的反馈循环,提升了预测准确性,加深了对 MOF 结构 - 性能关系的理解,加速了材料发现进程。

尽管目前 AI 在 MOF 研究中存在可解释性等问题,但随着技术发展和跨学科合作,这些问题将逐步解决。未来,AI 与实验室自动化的融合将不断深化,推动 MOF 研究取得更多突破,助力 MOF 材料在多领域的广泛应用。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值