本期推文将介绍一种多尺度时间卷积网络(Multiscale Temporal Convolutional Network,MSTCN),这项研究发表于《IEEE Transactions on Industrial Informatics》期刊。
钻柱剧烈振动是引发钻井问题的重要因素。目前,大多数振动识别方法依赖井下数据,但在实际应用中存在诸多限制。此外,复杂多变的地层环境使得单一尺度特征难以有效表征振动特性。为解决这些问题,荐读的论文提出了一种仅利用地面钻井数据的端到端振动识别模型,并基于多尺度特征提取方法进行优化。该方法构建了多尺度时间卷积网络(Multiscale Temporal Convolutional Network),以提取多传感器数据的多尺度时间特征,从而增强振动特征的表征能力,以适应复杂地层环境。此外,为进一步提升识别能力,引入双向长短时记忆网络(Bi-LSTM)来捕捉多尺度特征之间的上下文关联。基于实测数据的实验验证了所提方法的有效性,识别准确率达到 97%,优于现有方法。此外,相较于基于单一尺度特征的识别方法,该方法的准确率提高了 6%。该研究为钻柱振动的自动化诊断提供了一种高效可靠的解决方案。
论文的创新点主要有以下几点:
1)*提出了新型 MSTCN(多尺度时间卷积网络)*,通过结合局部多通道特征来提取全局多尺度时间特征,从而获得高效的高级振动表示。该方法能够增强识别模型对复杂地层的适应性,提高识别精度和鲁棒性;
2)***采用双向长短时记忆网络(BiLSTM)来捕捉提取出的振动特征的上下文关联。*通过同时在前向和反向方向遍历输入特征,该方法能够进一步获取更详细的特征信息;
**3)*基于实际钻井数据的对比实验验证了所提出模型的有效性和优越性。*实验结果表明,多尺度特征与上下文特征关联均能提升识别性能,该模型能够有效应对实际工业应用需求。
问题的背景
地质钻探是矿产资源勘探和地热能开发的关键环节,而钻柱振动是钻井过程中常见且严重的问题,直接影响钻井安全与效率,甚至导致工具损坏和钻速下降。因此,及时识别和检测钻柱振动对工业应用至关重要。传统基于物理模型的方法在钻柱振动识别中发挥了一定作用,但其复杂性较高,依赖于大量假设,难以适应不同的钻井环境。近年来,随着数据可用性的提高和人工智能的快速发展,数据驱动方法逐渐成为钻柱振动识别的研究热点。然而,当前的研究方法仍面临以下主要挑战:
-
**依赖昂贵的测量工具,工程适用性受限:**现有的传统机器学习方法(如逻辑回归、支持向量机等)通常依赖随钻测量(MWD)工具获取井下数据。然而,这些设备价格昂贵,在大多数钻井现场尚未普及,限制了方法的实际工程应用价值。
-
**忽视时间序列特征,振动识别精度受限:**钻柱振动是一个持续的时间序列现象,而许多传统方法未能充分考虑数据的时间特征,使得识别精度受限。尽管深度学习方法(如RNN和CNN)在时间序列建模方面取得了良好效果,但它们通常仅利用单尺度时间特征,难以全面表征复杂地层条件下的振动模式。
-
单一尺度特征提取能力不足,难以适应复杂地层:现有的深度学习模型在振动识别中多采用单一尺度的特征提取方法,难以有效捕捉复杂、动态变化的钻井环境下的多尺度信息,导致模型的适应性和鲁棒性不足。
-
缺乏特征之间的关联建模,信息利用不充分:近年来,部分研究引入了自注意力(SA)机制和卷积块注意力模块(CBAM)以增强特征提取能力,但仍未充分考虑不同尺度特征之间的上下文关联。双向长短时记忆网络(BiLSTM)等方法虽然能在一定程度上改善特征建模,但其与多尺度特征的融合仍有待优化,以进一步提升模型的准确性和稳定性。
针对上述的诸多挑战。荐读的论文提出了一种融合多尺度时间卷积网络(MSTCN)和BiLSTM的深度学习模型(MSTCN-BiLSTM),旨在更有效地利用多尺度时间特征和上下文信息,实现高精度的钻柱振动识别,并提高模型在复杂地层条件下的适应性和鲁棒性。
方法的概述
(一)钻井过程描述
钻井过程由钻机控制,如图 1(a) 所示。钻机主要由两大系统组成:钻柱旋转系统和泥浆循环系统。其中,钻柱系统从地面延伸至井底,包括吊钩、绞车、顶驱、钻杆、钻铤和钻头。绞车控制钻杆的垂直速度,而顶驱负责高速旋转。泥浆循环系统则通过泥浆泵输送钻井泥浆,以清理井底岩屑。
图1 地质钻井过程和钻柱振动。 (a) 钻井机。 (b) 在轻微振动和剧烈振动下的钻压。 © 在轻微振动和剧烈振动下的转速。 (d) 在轻微振动和剧烈振动下的扭矩。
在常规钻井作业中,利用地表多传感器钻井数据来管理钻井过程和监测钻柱振动。控制钻柱系统的关键参数包括钻压(Wob)和转速(Rpm),它们直接影响钻柱振动。不同的参数组合会导致不同的振动模式,通常情况下,高钻压(Wob)和低转速(Rpm)会引发扭转粘滑振动,如图 1(b) 和 1© 所示。此外,由泥浆循环系统控制的泵流量(Q)也对钻柱振动有重要影响。在Wob、Rpm和Q的共同作用下,地表扭矩(Trq)、吊钩载荷(Hl)和钻进速度(Rop)成为钻柱振动的重要状态变量。
在钻井工程中,工程师通常使用地表扭矩(Trq)来跟踪钻柱振动,特别是用于检测粘滑振动。当钻柱振动剧烈时,地表扭矩的峰值-峰值波动幅度会明显增大,如图 1(d) 所示。此外,基于扭矩计算的粘滑报警值可用于衡量振动强度,数值越大表示振动越严重。
由于钻井过程中需要穿透不同岩性组成的复杂多变地层,钻井变量的时间序列通常表现出不同的波动趋势和时间特征,并蕴含独特的振动模式。因此,提取钻井数据的多尺度时间特征以表征钻柱振动,并适应复杂地层条件至关重要。
(二)方案设计
为了有效监测复杂地层下的严重钻柱振动,提出了一种仅使用地面钻井数据的新型振动识别方案,如图2所示。首先,收集并预处理地面多传感器钻井数据作为序列输入。然后,开发了一种新型的多尺度时序卷积网络(MSTCN),用于提取振动序列中的有用多尺度时序特征。多尺度特征是通过不同膨胀因子的并行多通道DCC操作提取的单尺度特征融合而成。之后,通过卷积和残差连接操作将多尺度特征转换为最终的振动特征。最后,振动识别模块根据提取的振动标签概率执行二分类任务。在此过程中,应用了双向长短期记忆网络(BiLSTM)来挖掘提取特征的上下文特征链接,以提高识别能力。
图2 钻柱振动的端到端识别方案。(a) 数据收集与预处理。(b) 基于MSTCN的多尺度特征提取。© 振动识别。
如前所述,该方案为钻柱振动识别生成了一个端到端的分类框架。它直接接收原始钻井数据,且对振动识别的专业知识要求较低。因此,它在钻井过程中的工业应用中具有优势。
A. 单尺度TCN
单尺度TCN(时序卷积网络)由主连接和残差连接组成。主连接包括两个DCC层、权重归一化(WN)、修正线性单元(ReLU)和空间丢弃(SD)。每个DCC层利用膨胀因子(d)和滤波器大小(k)对输入序列进行卷积操作,以提取时序特征。为了提高特征激活性能,文章引入了高斯误差线性单元(GELU)代替ReLU,从而提升了神经网络在逼近复杂非线性函数上的能力。此外,TCN通过批归一化(BN)解决了初始网络权重敏感性的问题,确保了模型在不同输入下的稳定性。最后,通过1×1卷积构建残差连接,增强了网络的表达能力。
B. 基于MSTCN的振动特征提取
为了克服传统单尺度TCN的局限性,文章提出了多尺度时序卷积网络(MSTCN),用于提取钻柱振动的多尺度特征。在传统的TCN中,每个DCC层使用固定的膨胀因子,导致特征提取局限于单一尺度,不能有效提取多尺度信息。MSTCN采用了多通道DCC操作,每个通道使用不同的膨胀因子(如1、2、4),通过并行处理提取不同尺度的特征。各通道提取的特征会在同一层进行融合,从而形成最终的多尺度特征。此外,MSTCN引入批归一化(BN)、GELU激活函数和空间丢弃(SD)来增强特征的表达能力。特征经过处理后,通过拼接操作融合,生成最终的多尺度特征。
为了减少冗余信息并提高计算效率,MSTCN在特征融合后使用卷积操作降低特征图的维度,以确保与残差连接的一致性,进一步提取有效的特征信息。
C. 基于多尺度特征的振动识别
在特征提取完成后,钻柱振动识别被视为一个二分类问题。识别模块包括全局最大池化(GMP)层、双向长短期记忆(BiLSTM)层、全连接(FC)层和Softmax层。首先,MSTCN提取的高级特征通过GMP层进行处理。为了提高识别性能,引入BiLSTM提取特征中的上下文信息,捕捉输入特征中的前后时序依赖关系。BiLSTM输出的特征被输入到FC层,然后通过Softmax层输出属于轻微或严重振动类别的概率,完成振动的二分类任务。
通过BiLSTM和FC层的组合,模型能够基于提取的多尺度特征和上下文信息,准确区分不同类型的振动。
总结与思考
在荐读的论文中,为了实现仅使用地面钻井数据有效识别钻杆扭矩振动,提出了一种端到端识别模型MSTCN-BiLSTM。开发了一种新型的多尺度TCN,用于提取多传感器数据中的有用多尺度时间特征。这些多尺度特征包含了更丰富的振动特征信息,增强了模型对复杂地层的适应能力。此外,为了增强识别能力,引入了BiLSTM来捕获多尺度特征的上下文关联。通过一个钻井现场收集的数据案例研究,验证了MSTCN-BiLSTM的有效性。该模型达到了97%的准确率、94%的召回率和95%的F1分数,证明其具备强大的自动诊断钻杆严重振动的能力。与基于单尺度特征的识别模型相比,准确率、召回率和F1分数分别提高了6%、8%和9%。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。