去年底,一个做游戏开发的前同事跟我说被裁了,然后,他约了另一个前同事,三人一起去前公司附近吃了顿烧烤。
这个做开发的同事是一个技术leader,人很聪明,本科学校很不错,硕士院校更是top2,还是有证程序员,出活也快,现公司的那个上线游戏的服务器框架都是他一人搭建起来了,核心代码也主要是他写的,后面服务器招了几个人,他花在写代码的时间才慢慢变少。
所以,他被裁,我是真挺吃惊,就觉得他这种技术能力,放在哪里都是香的,但现实很残酷,我能想到的理由应该还是年龄大,三十七八了。先是让他向后来进厂的客户端主程汇报,过2月说燃性不够,让出去看机会,好在他因为呆的年数长,拿的赔偿+竞业金也够扛一阵子了。
再说回另一个同事,他是游戏策划,我跟他合作过挺久,36岁,985计算机科班,业务和沟通能力都很不错,后来升主策,最后做到制作人,再后来出去创业和进小公司,见识各种饼,也体验过勾心斗角,后来可能是厌倦了,就休息了一段,现在找工作,他说近期有关注AI,琢磨着怎么将AI与游戏结合,还学了Python,把代码发给我看,我哪懂什么Python,帮他投了10个与产品有关的岗位,都没过简历筛选。
三人的烧烤基本上是在踌躇悲凉的气氛下进行了,完全没有老友重逢的喜悦。
到了今年,身边又陆陆续续的有不少人失去了工作。
先是我儿子的同学的爸爸,一个优秀的B厂的产品经理,领了礼包。
然后是另一个游戏美术同事,她其实一直在煎熬的等待着这一天的到来,因为她们团队已经裁了3波,她艰难的存活了下来,但这次北京整个team一锅端了,吃散伙饭的时候大家抱头痛哭,场面令人动容。
再就是一个高P朋友也被告知,让出去找工作,他的学历更高,top2的博士,从求学到上班,一路奔袭,好不容易做到总监,也咔来这么一下,这个市场环境,高端岗位就更是少之又少,而且他年龄比我还大一点,也是不好办。
然后,不久前我老婆也被Z厂裁了,之前在东厂干了五六年,领导也算关照,但后来东厂整体搬到了亦庄,便只好另觅他就,苦苦支撑了一年多后,失去了工作。回到家,眼神都黯淡了下来,再也没有了往日的神采,我便安慰她说,在家陪儿子中考,她大概是觉得自己还可以再战,但后来据说是投了几百封简历,都石沉大海,再后来便琢磨着直播教C语言编程,每天晚上9.50-10.50,在那空对空哇哇的讲,直播间就我1个粉丝,一小时播完下钟,粉丝量还减少一个,完全没有任何正反馈,整个人状态都要崩塌,我实在于心不忍,便在周末越来几个被裁的朋友,大家一起聚聚,想想办法。
然后,便到了周末,大家围着一桌好饭好菜,这要是平日里,肯定是谈笑风生,而现在每个人都面露难色,我见此情景,便道:“如果不找个班上,有没有其他谋生门路呢?大家可以脑暴一下。”
一群人,面面相觑…
我便又说:满朝文武,为何支支吾吾,但说无妨。
然后,这群人,便说什么摆地摊啥的,也想不出来个啥,这些人,平日里可都是大厂的P5,P6,P7,当年在厂子里上钟的时候,谈组织架构调整,妄议公司高层,纵论国际形势的时候,那可都是P11水平啊,那可都是滔滔不绝的啊。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。