从ChatGPT对外投资图说起
-
当我们讨论ChatGPT将改变哪些行业的时候,可以换个思路想
-
对ChatGPT能力理解最清楚的人是谁
-
肯定是ChatGPT的管理人员,董事会成员,和投资股东

-
拿了投资方微软的巨量资金后,ChatGPT将这部分钱用于研发和提升产品之余
-
也成立了openAI基金,投资了一系列的创业公司
-
看看ChatGPT投资了哪些公司
-
从图上可以看到ChatGPT投资的公司,大致分为两类
-
上游: 可以让自己的ai进化
-
下游: 可以让自己的ai可以改进和提升的领域.
-
所以ChatGPT的管理团队认为可以有所作为的行业:
-
1.教育
-
2.记录/文书
-
3.法律
学生 (帮助)
-
由ChatGPT代写作业,已经成为美国大学的一种现象
-
调查发现,89%的美国大学生已经在用ChatGPT写作业。这就意味着,ChatGPT已经可以从事初级的乃至更高水平的学术研究。
-
对大学以下的中小学习题,chatGPT可以解答大量的基础题目,给出正确的答案和解题思路
-
可以用来做作业,也可以用来当成解题助手,家庭老师
-
同时因为ChatGPT的代写作业能力太强.相应的老师的反作弊工作也提上日程
-
所以我们看openAI基金投资了:Milo 家长虚拟助理
教师 (部分替代,挑战)
-
一方面老师们都开始担心学生使用ChatGPT这一技术作弊
-
另一方面,也要考虑考虑自己的工作安全,部分教师的工作(帮学生解答习题)
-
随着不断的进化,ChatGPT“迟早可以作为一名老师轻松地授课了”。
-
所以我们看openAI基金投资了:Speak AI英语学习平台
记录/文书
-
录入员,会议记录类工作会被ai工具更有效率的替代
-
就像这张微软放出来的demo图中,会议中每个人的发言断点,会议提出来的工作项,提醒项,ai都能很好的完成
-
所以我们看openAI基金投资了:Mem Labs 记笔记应用

法律类工作:
-
律师助理和法律助理等法律行业工作人员也是在进行大量的信息消化后,综合他们所学到的知识,然后通过撰写法律摘要或意见使内容易于理解。
-
这和ai的训练路径是一样的,信息消化和学习,是ai最擅长的部分.
-
所以我们看openAI基金投资了:Harvey Al法律顾问
会计类工作:
-
ChatGPT将会很轻松地把财务人员从银行对账、月末入款提醒、进销项差额提醒、增值税验证等这些枯燥重复、初级的工作中解放出来。
-
甚至,对于是一些专业的财务报告撰写也会带来翻天覆地的影响。
-
好处是这不仅极大缓解了会计人员的工作强度,而且其凭借客观、准确和及时的特点也很大程度上加强了会计信息的相关性和可靠性。
-
所以我们看openAI基金投资了:Kick 会计软件
其他类型工作
技术类工作:程序员们
- ChatGPT可以快速生成部分基础代码,意味着一项工作在未来可以用更少的员工完成
媒体类工作:广告、内容创作、技术写作、新闻
- ChatGPT可以快速生成部分基础代码,意味着一项工作在未来可以用更少的员工完成
客服人员类工作
-
智能客服的能力,会在ai能力提升,更多的代替人工客服.
-
未来享受人工客服的时间会越来越少
总结
-
从ChatGPT对外投资的方向看,将可能可能会对以下行业/职业产生一定的影响
-
教育:学生,老师
-
记录/文书:录入员,资料整理类工作
-
法律/财务:法律顾问/财务表格
-
技术类工作:程序员们
-
媒体类工作:广告、内容创作、技术写作、新闻
-
客服人员类工作
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。