通过大语言模型降低从财务报告中提取信息的幻觉

概述

金融分析师对公司财务报告中的问答部分非常重要,但传统方法的可扩展性和人为错误的问题限制了从问答部分中提取有价值的见解。本研究展示了使用大语言模型(LLMs)有效快速地提取收入报告文本中的信息的方法,并通过检索增强生成技术和元数据结合来降低幻觉。通过各种客观指标评估了使用和不使用我们提出的方法的各种LLMs的结果,并经验证明了我们方法的优越性。

金融市场,公司电话交流记录,自然语言处理,大语言模型

重要问题探讨

1. 为什么传统的方法在从财务报告中提取信息方面存在局限性? 传统的方法如详细阅读和记笔记缺乏可扩展性,容易出现人为错误。而光学字符识别(OCR)等技术在处理非结构化文本时会出现困难,并常常错过细微的语言细节。

答:传统的方法在从财务报告中提取信息方面存在局限性的原因是因为财务报告具有复杂的语言结构和领域特定的术语,规则匹配和基于规则的方法往往难以适应财务报告中动态的语言模式,因此无法准确提取关键信息。光学字符识别(OCR)等技术虽然可以将扫描或数字化的图像转换成机器可读的文本,但缺乏对文档内信息的Context理解,无法理解文档内容,如果不与其他基于文本的方法相结合,对于生成问答系统的抽象理解系统无能为力。

2. LLMs如何改善从财务报告中提取信息的效率和准确性? LLMs具有对上下文细微差异的内在理解能力,可以准确识别和提取相关的问答对。与传统方法相比,LLMs采用数据驱动的方法,可以适应财务报告中动态语言模式的变化,提高了效率和准确性。

答:LLMs可以通过其对上下文细微差异的内在理解能力,有效提取财务报告中的相关问答对,从而改善了从财务报告中提取信息的效率和准确性。LLMs通过数据驱动的方法,可以适应财务报告中动态语言模式的变化,从而提高了提取信息的效率和准确性。

3. LLMs如何减少在抽取财务报告信息时的"幻觉"问题? LLMs通过与检索系统的无缝集成来增强其准确性,从而减少抽取财务报告信息时出现的"幻觉"问题。

答:LLMs在抽取财务报告信息时往往存在"幻觉"的问题,即生成的答案可能与事实不符。为了解决这个问题,研究人员通过与检索系统无缝集成的方式增强了LLMs的准确性。通过利用外部信息库,检索增强型LLMs旨在提高系统的准确性。然而,即使有这些先进的技术,仍然存在一些挑战,特别是在涉及多个文档的情况下,模型可能会意外地从非预期的来源中提取信息。

4. 文章中提到的metadata有什么作用?如何在提取信息过程中利用metadata?

答:metadata在提取信息的过程中起到了重要的作用。metadata是与文档相关的附加信息,如文档的属性、标签、关键字等。在提取信息的过程中,我们可以利用metadata来选择性地过滤和检索与查询公司相关的文档片段。通过metadata的信息,我们可以有针对性地选择与查询公司相关的文档,从而显著减少了模型的“幻觉”问题,特别是在多文档问答系统中。

5. 文章中提到的评估指标有哪些?这些评估指标如何证明使用metadata可以提高答案的准确性?

答:文章中提到的评估指标有LCSubsequence Word Count和BertScore等。这些评估指标用于评估LLMs生成的答案与真实答案之间的相似度。文章通过比较使用metadata和不使用metadata两种方式下LLMs的评估指标得分,证明了使用metadata可以提高答案的准确性。使用metadata时,大多数LLMs生成的答案更接近真实答案,而不使用metadata时,LLMs生成的答案则更容易出现与真实答案不符的情况。

6. 文章提到了LLMs在文本匹配基础上的利用,这一方面的进一步研究有什么意义?

答:文章中提到,虽然LLMs在文本匹配基础上的利用在大多数度量标准上并没有明显的差异,但这可能是因为外部模型的嵌入被用作字符串匹配的基础。这一方面需要进一步的研究和审查。研究人员认为,文本匹配基础上的LLMs在提取信息的准确性方面可能存在潜力,因此进行进一步的研究将有助于发现和利用LLMs在文本匹配方面的优势,从而提高答案的准确性。

7. 文章提出了未来研究的几个关键策略,这些策略包括什么内容?

答:文章提出了几个未来研究的关键策略。其中包括使用降维技术来减轻维度灾难的影响;调整检索文档的数量,以提高生成答案的上下文相关性;基于这一方面进行微调等等。这些策略旨在进一步研究和改进LLMs在财务报告问答系统中的性能,从而提高答案的准确性和相关性。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值