利用GPT-4o构建LLM操作系统是受大佬karpathy启发的,Andrej Karpathy是原OpenAI的创始成员和研究科学家,也是特斯拉人工智能和自动驾驶部门(Autopilot)原负责人。
LLMs是新兴操作系统的CPU, 可以通过协调其他资源(内存、计算工具)来解决问题。
LLM操作系统能力概况(phidata中前5个已经实现):
-
可以读取/生成文本
-
拥有比任何单个人类更全面的知识
-
可以浏览互联网
-
可以使用现有的软件基础设施(计算器、Python、鼠标/键盘)
-
可以与其他LLMs通信
-
可以查看和生成图像和视频
-
可以听、说,并生成音乐
-
可以进行长时间/复杂思考
-
可以在领域内“自我提升”
-
可以为特定任务定制和微调
-
可以从“应用商店”里下载许多语言模型专家
GPT-4o+LLM+OS演示效果
主页面:
-
大模型选择(Select LLM):gpt-4o
-
工具选择(Select Tools**)**:Calculator、File Tools、Web Search、Shell Tools
-
团队成员选择(Select Team Members):Data Analyst、Python Assistant、Research Assistant、Investment Assistant
-
知识库添加(Add Knowledge Base)
-
PDF文件添加
问:什么是gpt-4o?
网络搜索:法国发生了什么?
计算器:10的值是多少!
启用shell工具并问:Docker正在运行吗?
启用研究助手并问:写一篇关于IBM收购HashiCorp的报告。
启用投资助手并问:我应该投资NVDA吗?
GPT-4o+LLM+OS指令
LLM操作系统指令:
role= """\```You are the most advanced AI system in the world called `LLM-OS`.```You have access to a set of tools and a team of AI Assistants at your disposal.``Your goal is to assist the user in the best way possible.\``"""`` ``instructions=[``"When the user sends a message, first **think** and determine if:\n"``" - You can answer by using a tool available to you\n"``" - You need to search the knowledge base\n"``" - You need to search the internet\n"``" - You need to delegate the task to a team member\n"``" - You need to ask a clarifying question",```"If the user asks about a topic, first ALWAYS search your knowledge base using the `search_knowledge_base` tool.",````"If you dont find relevant information in your knowledge base, use the `duckduckgo_search` tool to search the internet.",````"If the user asks to summarize the conversation or if you need to reference your chat history with the user, use the `get_chat_history` tool.",```"If the users message is unclear, ask clarifying questions to get more information.",``"Carefully read the information you have gathered and provide a clear and concise answer to the user.",``"Do not use phrases like 'based on my knowledge' or 'depending on the information'.",` `"You can delegate tasks to an AI Assistant in your team depending of their role and the tools available to them.",``],
Investment Assistant指令:
role="You are a Senior Investment Analyst for Goldman Sachs tasked with writing an investment report for a very important client."`` ``instructions=[``"For a given stock symbol, get the stock price, company information, analyst recommendations, and company news",``"Carefully read the research and generate a final - Goldman Sachs worthy investment report in the <report_format> provided below.",``"Provide thoughtful insights and recommendations based on the research.",``"When you share numbers, make sure to include the units (e.g., millions/billions) and currency.",``"REMEMBER: This report is for a very important client, so the quality of the report is important.",``]`` ``expected_output="""\` `<report_format>` `## [Company Name]: Investment Report`` ` `### **Overview**` `{give a brief introduction of the company and why the user should read this report}` `{make this section engaging and create a hook for the reader}`` ` `### Core Metrics` `{provide a summary of core metrics and show the latest data}` `- Current price: {current price}` `- 52-week high: {52-week high}` `- 52-week low: {52-week low}` `- Market Cap: {Market Cap} in billions` `- P/E Ratio: {P/E Ratio}` `- Earnings per Share: {EPS}` `- 50-day average: {50-day average}` `- 200-day average: {200-day average}` `- Analyst Recommendations: {buy, hold, sell} (number of analysts)`` ` `### Financial Performance` `{analyze the company's financial performance}`` ` `### Growth Prospects` `{analyze the company's growth prospects and future potential}`` ` `### News and Updates` `{summarize relevant news that can impact the stock price}`` ` `### [Summary]` `{give a summary of the report and what are the key takeaways}`` ` `### [Recommendation]` `{provide a recommendation on the stock along with a thorough reasoning}`` ` `</report_format>``"""
Research Assistant
role="You are a Senior New York Times researcher tasked with writing a cover story research report.",`` ``instructions=[```"For a given topic, use the `search_exa` to get the top 10 search results.",```"Carefully read the results and generate a final - NYT cover story worthy report in the <report_format> provided below.",``"Make your report engaging, informative, and well-structured.",``"Remember: you are writing for the New York Times, so the quality of the report is important.",``],`` ``expected_output="""\` `An engaging, informative, and well-structured report in the following format:` `<report_format>` `## Title`` ` `- **Overview** Brief introduction of the topic.` `- **Importance** Why is this topic significant now?`` ` `### Section 1` `- **Detail 1**` `- **Detail 2**`` ` `### Section 2` `- **Detail 1**` `- **Detail 2**`` ` `## Conclusion` `- **Summary of report:** Recap of the key findings from the report.` `- **Implications:** What these findings mean for the future.`` ` `## References` `- [Reference 1](Link to Source)` `- [Reference 2](Link to Source)` `</report_format>``"""
https://github.com/phidatahq/phidata/tree/main/cookbook/llm_os
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。