ANOLE: An Open, Autoregressive, Native Large Multimodal Models for Interleaved Image-Text Generation
介绍:
https://gair-nlp.github.io/anole/
代码:
https://github.com/GAIR-NLP/anole
论文:
https://arxiv.org/abs/2407.06135
Anole 是一个开源的自回归大型多模态模型,专为图像-文本交替生成而设计,由来自上海交通大学、上海人工智能实验室、复旦大学和生成人工智能研究实验室(GAIR)的研究人员联合开发。它基于Meta AI的Chameleon模型,通过创新的微调策略,实现了数据和参数的高效率。
Anole 不仅能够生成高质量的图像,还能生成与图像紧密相连的文本,展现出卓越的多模态生成能力。它在保持Chameleon在文本理解和生成方面的优势的同时,进一步扩展了其在图像生成和多模态理解方面的能力。
Anole 具备原生的多模态处理能力,无需依赖额外的扩散模型或适配器来整合视觉表示。它采用了早期融合、基于标记的自回归方法,通过特定的tokenizer将文本和图像转换为统一的多模态token序列,并输入到自回归变换器中进行建模。这种方法简化了模型架构,提高了推理效率,并且使得模型能够无缝地生成交错的图像和文本序列。Anole 的微调过程仅涉及不到4000万参数,且仅需约6000个样本,这显示了其在促进复杂功能实现方面的高效性。
技术解读
Anole 的构建过程是一种创新的多模态模型开发方法,旨在解决现有开源多模态模型的局限性,并推动多模态人工智能技术的发展。其设计思路主要包括:
-
原生多模态集成:Anole的设计目标是实现一个原生的多模态模型,这意味着它从预训练阶段开始就处理多模态数据,而不是依赖于预训练的大型语言模型(LLMs)作为基础。
-
自回归生成:Anole采用自回归方法,这使得它能够生成连贯的图像和文本序列,而不需要依赖于复杂的扩散模型或其他生成机制。
-
数据和参数效率:Anole的设计注重数据和参数效率,通过微调少量参数来实现图像和多模态生成能力,减少了对大量数据和计算资源的需求。
Anole 的构建过程大致如下
-
基于Chameleon:Anole是在Meta AI的Chameleon模型的基础上构建的。Chameleon本身是一个展示多模态理解能力的模型,但不支持图像生成或多模态生成。Anole通过扩展Chameleon的能力,使其能够生成图像和多模态内容。
-
微调策略:Anole的关键创新之一是其微调策略。通过冻结Chameleon的大部分参数,并仅微调与图像token ID相对应的输出头层的logits,Anole能够促进图像生成和多模态生成能力,同时保持文本理解和生成的能力。
-
数据集选择:Anole使用了来自LAION-5B艺术数据集的5859张图像进行微调,这些图像提供了丰富的视觉内容,有助于训练模型生成高质量的图像。
-
高效训练:Anole的微调过程非常高效,仅需要在8个A100 GPU上运行约30分钟,这表明了其在资源利用上的高效性。
Anole的代码、训练框架和指令调整数据都已开源,这使得研究者和开发者可以充分利用和扩展Anole的能力,并促进了社区的协作和创新。
论文解读
本文介绍了一个名为ANOLE的开源、自回归的原生大型多模态模型,它能够进行交错的图像-文本生成。
以下是论文要点概括:
摘要(Abstract):
-
ANOLE是一个开放的、自回归的、原生的大型多模态模型,用于交错的图像-文本生成。
-
它基于Meta AI的Chameleon模型,采用创新的微调策略,数据和参数效率都很高。
-
论文提供了模型、训练框架和指令调整数据的开源。
引言(Introduction):
-
介绍了自回归开源大型语言模型(如LLaMA)的发展,并指出了现有开源多模态模型(LMMs)的局限性。
-
ANOLE旨在解决现有模型的局限性,提供与大型语言模型(LLMs)相似的开发能力。
关键贡献(Key Contributions):
-
全面开源实现:通过创新的微调方法,ANOLE从Chameleon中解锁了视觉和多模态生成能力。
-
数据和参数高效的微调:微调少于4000万参数,仅需要约6000个样本。
-
训练、多模态推理和定性评估:提供了统一的分词器基础的多模态模型的训练和推理框架。
-
丰富的资源以提高可访问性:提供了大量数据资源和详细教程。
相关工作(Related Works):
- 对比了不同的模型,包括是否使用扩散模型、是否为原生多模态、是否基于标记的方法以及是否支持开源的多模态生成。
ANOLE模型介绍(ANOLE):
-
ANOLE采用与Chameleon相同的方法和架构,使用基于标记的自回归方法来模拟多模态序列。
-
介绍了如何通过微调Chameleon来增强其图像生成和多模态生成能力。
评估(Evaluation):
- 对ANOLE的图像生成和交错图像-文本生成能力进行了定性分析,展示了其高质量的生成示例。
结论与未来方向(Conclusion & Future Directions):
- 总结了ANOLE的先进多模态生成能力,并提出了未来的发展方向,包括提高精确指令跟随能力、扩展上下文长度、改进多模态理解能力等。
局限性与声明(Limitations & Disclaimer):
- 指出ANOLE仅用于研究,且还在开发中,存在需要解决的局限性,特别是在确保生成图像的安全性和无害性方面。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。