打破多模态检索的瓶颈,OmniSearch实现智能动态规划!

随着多模态大语言模型(MLLM)的广泛应用,模型在理解复杂问题时经常会出现“幻觉”现象,即模型生成的内容与事实不符。多模态检索增强生成(mRAG)技术旨在通过外部知识库的检索来解决这一问题,但现有的mRAG方法多依赖于预定义的检索流程,难以应对现实世界中复杂、多变的知识需求。

为解决这一问题,阿里巴巴通义实验室RAG团队开发了OmniSearch,业内首个具备自适应规划能力的多模态检索增强生成框架。OmniSearch能够动态拆解复杂问题,根据当前的检索结果和问题情境调整下一步的检索策略,模拟了人类在解决复杂问题时的行为方式,显著提升了检索效率和模型生成的准确性。

  • Github链接:https://github.com/Alibaba-NLP/OmniSearch

OmniSearch:多模态检索的新纪元

传统mRAG的局限性

现有的mRAG方法通常采用固定的检索流程,面对复杂的多模态问题时,模型无法灵活调整检索策略,导致如下两大问题:

  1. 非自适应检索:检索策略无法根据问题中间步骤的变化或新的发现进行调整,无法充分理解或验证多模态输入,造成信息获取不完整。

  2. 过载检索:单次检索过度依赖单一查询,难以获取问题真正所需的关键知识,往往导致无关信息过多,增加推理难度。

OmniSearch针对这些局限性进行了突破。通过模拟人类的思维方式,OmniSearch能够动态地将复杂的多模态问题分解为多个子问题,并为每个子问题制定相应的检索步骤和策略,确保模型获取到精确的答案。

OmniSearch方法

OmniSearch引入了一种全新的动态检索规划框架,旨在解决现有多模态检索增强生成(mRAG)方法中的非自适应和检索过载问题。它的核心创新在于动态检索规划,即通过模拟人类思考问题的方式,将复杂的问题拆解为多个子问题,并通过递归检索与推理流程,逐步接近问题的最终解答。

OmniSearch的核心架构由以下几部分组成:

1.规划代理(Planning Agent)

OmniSearch的规划代理是其核心模块,负责对原始问题进行逐步分解。具体来说,规划代理会根据每个检索步骤的反馈,决定下一步要解决的子问题,并选择合适的检索工具来进一步获取信息。这个模块能够动态地规划检索路径,避免了传统mRAG中一次性检索所带来的信息过载问题。

规划代理的工作流程如下:

  • 首先,它通过初步分析问题,提出需要解决的第一个子问题。

  • 在检索到初步答案后,代理会对结果进行分析,决定是否需要进一步的检索或者是否有新的子问题需要提出。

  • 代理会灵活选择不同的检索方式,直至最终获得足够的信息给出问题的完整解答。

2.检索器(Retriever)

OmniSearch的检索器负责执行实际的检索操作,它可以根据规划代理的指示,进行图像检索、文本检索或跨模态检索。OmniSearch支持多种检索方式,包括:

  • 图像检索:通过输入的图像检索相关的视觉信息;

  • 文本检索:根据输入的文本内容检索相关的文本信息;

  • 跨模态检索:通过输入的多模态数据(如图片加文本)进行跨模态的信息检索。

  • 不检索:当前子问题不需要检索外部信息

每次检索完成后,检索器会返回相关信息供规划代理进行分析和处理,从而决定接下来的行动。

3.子问题求解器(Sub-question Solver)

子问题求解器的主要功能是对检索到的内容进行总结和解答。该模块会根据规划代理提出的子问题,从检索到的知识中提取出相关的信息并生成对应的回答。求解器可以是任意多模态大语言模型,甚至可以是规划代理本身。

子问题求解器还具备高度的可扩展性,可以与不同大小的多模态大语言模型集成。在实验中,OmniSearch分别集成了GPT-4V和Qwen-VL-Chat模型,验证了其在多种环境下的有效性。

4.迭代推理与检索(Iterative Reasoning and Retrieval)

OmniSearch采用了递归式的检索与推理流程。每当模型提出子问题并获得初步答案后,它会根据当前的解答状态判断是否需要继续检索,或是提出新的子问题。这个过程会持续进行,直到OmniSearch认为已经获得了足够的信息可以给出问题的最终答案。

5.多模态特征的交互

为了能够同时处理文本、图像等多模态信息,OmniSearch对检索得到的多模态特征进行了有效的交互。模型能够根据不同模态的信息灵活调整检索策略,例如在文本推理时引入网页的常识知识,或者是在分析图像时调用视觉信息来辅助判断。

6.反馈循环机制(Feedback Loop)

OmniSearch在每一步检索和推理后,都会利用反馈循环机制来反思当前的检索结果并决定下一步的行动。这种机制使得OmniSearch可以在遇到错误信息或不足信息时,自动调整检索方向,从而提高检索的精确度和有效性。

案例展示

在一个涉及多个模态的复杂问题中,例如“*(图中两人)哪部电影的票房更高?”时,OmniSearch首先通过图像识别出其中的演员,然后根据演员的信息进行文本检索,查找相关电影的票房信息。与传统的单步检索不同,OmniSearch在每一步的检索过程中都会依据最新的检索结果进行反思与推理,从而逐步接近问题的正确答案。

OmniSearch的技术优势

OmniSearch通过以下关键技术提升了多模态检索增强生成的能力:

  • 自适应检索规划:OmniSearch能够根据问题的解决进程,动态调整检索策略。例如,当面临一个涉及多个图片和文本的复杂问题时,OmniSearch会首先对图片中的关键信息进行初步检索,然后根据检索结果动态规划后续的检索步骤,确保获取到与问题相关的关键知识。

  • 灵活的检索工具选择:OmniSearch可以根据问题的类型选择不同的检索工具,包括图像检索、文本检索和跨模态检索。它能够在不牺牲准确率的情况下,大幅减少不必要的检索步骤。

  • 模块化设计:OmniSearch可作为一个即插即用的检索模块,与任意多模态大语言模型(MLLMs)集成,使现有的MLLMs具备更强的动态问题解决能力。

Dyn-VQA:填补数据集空白

为了进一步推动多模态检索增强生成的研究,我们构建了全新的 Dyn-VQA 数据集。Dyn-VQA包含了1452个动态问题,涵盖了三种类型:

  1. 答案快速变化的问题:这些问题的背景知识不断更新,需要模型具备动态的再检索能力。

  2. 多模态知识需求的问题:问题需要同时从多模态信息(如图像、文本等)中获取知识。

  3. 多跳问题:问题需要多个推理步骤,要求模型在检索后进行多步(特别是大于2步)推理。

Dyn-VQA数据集专为评估OmniSearch这样的动态检索方法设计,弥补了现有VQA数据集在处理动态问题时的不足,展示了OmniSearch在复杂问题解决中的强大能力。

实验结果

在一系列基准数据集上的实验中,OmniSearch展现了显著的性能优势。特别是在处理需要多步推理、多模态知识和快速变化答案的问题时,OmniSearch相较于现有的mRAG方法表现更为优异。

1.在Dyn-VQA数据集上的表现

在Dyn-VQA数据集上,我们对比了OmniSearch与多种现有的mRAG方法,包括基于两步检索的传统mRAG,以及其他商用生成性搜索引擎(如Bing Chat、Perplexity AI、Gemini)。实验结果显示,OmniSearch在多个维度上均取得了突破性进展:

  • 答案更新频率:对于答案快速变化的问题,OmniSearch的表现显著优于GPT-4V结合启发式mRAG方法,准确率提升了近88%。

  • 多模态知识需求:OmniSearch能够有效地结合图像和文本进行检索,其在需要额外视觉知识的复杂问题上的表现远超现有模型,准确率提高了35%以上。

  • 多跳推理问题:OmniSearch通过多次检索和动态规划,能够精确解决需要多步推理的问题,实验结果表明其在这类问题上的表现优于当前最先进的多模态模型,准确率提升了约35%。

实验结果表明,OmniSearch在三类动态问题上的表现均优于传统的静态检索方法,展现了其在处理复杂动态问题时的独特优势。

2.在其他数据集上的表现

OmniSearch还被应用于广泛使用的VQA(视觉问答)数据集上,以下是主要发现:

  • 接近人类级别表现:OmniSearch在大多数VQA任务上达到了接近人类水平的表现。例如,在VQAv2和A-OKVQA数据集中,OmniSearch的准确率分别达到了70.34和84.12,显著超越了传统mRAG方法。

  • 复杂问题处理能力:在更具挑战性的Dyn-VQA数据集上,OmniSearch通过多步检索策略显著提升了模型的表现,达到了50.03的F1-Recall评分,相比基于GPT-4V的传统两步检索方法提升了近14分。

3.模块化能力与可扩展性

OmniSearch具备高度的模块化和可扩展性,可以与不同规模的多模态大语言模型集成。我们分别基于开源的Qwen-VL-Chat和闭源的GPT-4V进行了实验,结果表明:

  • 在不同模型上的效果:无论是与较大的GPT-4V模型,还是与较小的Qwen-VL-Chat集成,OmniSearch都表现出了显著的性能提升。在基于GPT-4V的实验中,OmniSearch达到了54.45的F1-Recall评分,而基于Qwen-VL-Chat的OmniSearch也取得了45.52的评分,展现了其在不同模型上的通用性和有效性。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值