AI模拟角色这个方向,最常见的应用就是AI陪伴类的,像是character.ai这种代表性的产品确实是满足了一部分人的需求。
微软最近开源了TinyTroupe,用AI来模拟模拟具有特定性格、兴趣和目标的人。
相当于是模拟了社会上的各类人群,让每一个代理都有自己的思想。
这些代理的重点是要理解人类的行为,然后我们通过这些代理来完成生产生活中需要很多人脑力劳动的简单工作。
官方的这张图就很形象,在台上每个代理都有不同的角色,每个代理就会有不同的思想,做不同的事情。
项目简介
TinyTroupe 通过大型语言模型来模拟具有特定个性、兴趣和目标的人物代理。这些代理可以在被称为“TinyWorld”的模拟环境中进行交互,模拟现实行为以增强想象力和获取商业洞察。TinyTroupe 特别适用于广告评估、软件测试、数据生成以及项目和产品管理等应用,通过模拟特定人群的反应来优化决策和创意过程。
DEMO
以广告评估为例,示例中选择了3条电视广告,然后让代理来讨论,从中挑选出最好的一条广告。
为了大家阅读方便,直接帮大家翻译了。
下面是三条广告的内容。
这时候就可以给代理发号施令了。
然后代理们就开始了激烈的讨论,模拟了一群消费者对广告评估的场景。
整个讨论的过程挺长的,只节选了一部分。
讨论过后,让各代理开始投票,选择自己认为最好的一条广告。
最终获得结果,大多数代理选择了ad1,认为LG的这条广告是最好的。
整个过程还是讨论的非常激烈的,这才是真的AI头脑风暴。
应用场景
TinyTroupe的应用场景感觉真的非常多,我来讲几个,其他的大家可以补充。
1.广告评估、创意优化
通过模拟不同消费者群体的反应,TinyTroupe可以帮助广告团队测试创意和广告效果,优化广告内容和投放策略,提前预测广告的市场反应,提升广告效果。
2.市场调研
TinyTroupe能够创建虚拟消费者,模拟不同人群的购买行为、品牌认知和情感反应,帮助企业精准了解目标市场需求,优化营销策略,降低市场调研成本。
3.产品设计用户体验测试
在产品设计阶段,TinyTroupe通过模拟用户行为,帮助设计团队识别潜在问题和用户痛点,优化产品界面和功能,提升用户体验和市场竞争力。
4.风险评估
通过模拟不同商务角色的互动,TinyTroupe可以帮助企业预测决策结果,评估策略风险,优化业务拓展和市场进入方案,提高决策的科学性和成功率。
5.游戏开发
游戏开发者可利用TinyTroupe模拟虚拟角色与玩家的互动,优化角色行为和游戏剧情,提升游戏的沉浸感和玩家体验。
项目链接
https://www.dongaigc.com/p/microsoft/TinyTroupe
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。