近日,由《中国卫生信息管理杂志》社、华中科技大学信息医学研究所主办,各地市卫生信息学会支持的第三届医疗健康信息互联互通与智慧医院建设大会于湖北武汉召开。大会以“互联互通赋能医院高质量发展”为主题,紧扣医院信息互联互通建设、智慧医院建设等前沿话题,以会议及展览为载体,吸引了众多卫生健康和信息化领域的专家、学者和企业代表的热情参与。
医联集团作为参展商之一,重磅推介了MedGPT赋能下的“医联AI医疗应用平台”院端解决方案。方案从早期高规格的AI技术能力积累,到自研快慢系统的“大模型幻觉消除”技术的角度,详细介绍了其在技术方面的差异化优势,引发与会人士的强烈反响。
大模型幻觉消除提升医疗决策的准确性
众所周知,在医院临床诊疗实际应用场景中,医疗决策需要严格的循证原则。然而,现有的垂直大模型在处理复杂医疗数据时,往往会遇到“幻觉”问题,即模型给出与真实情况不符的预测或建议。医联通过自研快慢系统,有效解决了这一行业痛点问题。
医联在AI医疗领域的探索始于2017年,当时医联与IBM Watson和中电数据展开了深度的合作。在与IBM Watson的合作中,医联获得了先进的自然语言处理(NLP)和机器学习技术,这些技术为后来的MedGPT系统的开发提供了重要的支持。同时,与中电数据的合作则帮助医联在医疗数据的收集、处理和分析上建立了完善的体系,为AI模型的训练和优化提供了丰富的数据资源。
快慢系统是医联院端解决方案的核心组成部分。快系统通过高效的算法和模型,实现了病情的快速初步评估和科室推荐,大大缩短了患者的等待时间。而慢系统则针对复杂、疑难病例,提供了更为详细和准确的诊断建议和治疗方案。
在实际应用中,快系统主要负责处理大量的、常规的医疗数据,通过高效的算法和模型,实现快速的病情初步评估和科室推荐。而慢系统则针对复杂、疑难病例,利用专家系统中的独立诊断逻辑模块,结合医生创建及审核校验的诊断知识图谱,对大模型的决策逻辑进行实时校验和修正。正是在这种快慢系统工作流的结合下,不仅大大提高了AI在医疗决策的准确性,还消除了大模型在医疗应用中的“幻觉”问题。
例如,儿童溃疡性结肠炎(UC)确实是一种儿童消化系统里的慢性病,其症状多样且可能与其他疾病相似,因此容易与慢性细菌性痢疾、克罗恩病、血吸虫病肠炎、阿米巴性肠炎等疾病混淆,给医生的准确诊断和有效治疗带来了不小的挑战。
由于MedGPT具备强大的复杂推理能力,可以整合海量的临床数据,包括不同年龄段儿童UC 的症状特点、各种检查结果的综合分析等多维度信息。通过输入患儿的基本信息、症状表现以及初步检查结果,快慢系统的介入,能够减少生成错误或误导性信息的情况,避免出现大模型幻觉。从而快速提供可能的诊断建议,帮助医生更准确地判断是否为 UC,减少误诊的发生。此外,基于患者的具体情况,MedGPT可以生成个性化的治疗方案,为医生提供有价值的参考,为儿童溃疡性结肠炎的精准诊断提供了新的可能。
不仅如此,考虑到儿童溃疡性结肠炎的复杂性,MedGPT能够根据患儿的病情严重程度、病变范围以及身体发育状况等因素,推荐合适的药物种类、剂量和疗程,实现个体化药物治疗方案制定。
例如,对于轻度儿童溃疡性结肠炎患儿,MedGPT可能建议先使用氨基水杨酸类药物进行治疗,并根据患儿的体重、年龄等计算出合适的剂量。同时,MedGPT还能预测药物可能的不良反应,并提供相应的监测建议,确保治疗的安全性和有效性。
多模态医学应用拓展医疗服务的广度和深度
除了快慢系统的结合,医联院端解决方案还充分利用了多模态医学技术的优势。通过整合多种医学检查检验数据,如影像、生化、病理等,医联实现了对患者病情的全面、准确的评估。同时,利用深度学习、自然语言处理等AI技术,医联还开发了一系列多模态医学应用,如智能预问诊、智能分导诊、报告解读等,进一步拓展了医疗服务的广度和深度。
这些多模态医学应用不仅提高了医疗服务的效率和质量,还为患者带来了更为便捷和个性化的就医体验。例如,智能预问诊系统可以通过一系列预设问题引导患者详细描述病情,初步评估病情并推荐合适的科室或医生;而报告解读系统则可以对患者的体检报告、检验报告等医疗文书进行自动解读和分析,帮助患者快速了解自己的健康状况。
医联院端解决方案从技术角度看具有显著的优势。通过快慢系统的结合和多模态医学技术的应用,医联不仅消除了大模型在医疗应用中的“幻觉”问题,还实现了高效、可靠的医疗服务。这些技术优势为医联在未来的医疗AI领域的发展奠定了坚实的基础。
医学循证进一步验证MedGPT独特优势
对于初次诊断结果存在疑虑或需要进一步确认的病例,MedGPT可以进行二次诊断。通过对比不同诊断方案、分析检查结果和患者病史,MedGPT能够提供更为全面、准确的诊断意见,为医生提供有力支持。
MedGPT能够根据患者的具体病情和诊断结果,提供个性化的治疗方案建议。这些方案基于最新的医学研究成果和临床实践,能够帮助医生制定更为科学、合理的治疗方案,提高治疗效果。
在治疗过程中,MedGPT还可以进行随访管理,定期询问患者病情变化,收集新的检查结果,并根据这些信息调整治疗方案。这种持续性的关注和管理有助于及时发现并处理病情变化,提高患者的生活质量。
对于复杂的医学检查报告,如病理检查、影像学检查等,MedGPT能够辅助医生进行解读。通过深度学习算法和医学知识库的支持,MedGPT能够准确理解报告中的关键信息,为医生提供有价值的解读建议。
MedGPT之所以能够在医学领域展现出如此广泛的应用能力,主要得益于其强大的底层技术和丰富的医疗数据支持。通过引入Transformer架构、进行大量医学文本和临床数据的训练以及特殊优化(如一致性校验机制、多维度的诊疗准确性评测体系等),MedGPT在医学领域取得了显著的成绩。
如果站在历史维度回看,医疗垂类大模型里,第一次AI医生和真人医生的双盲实验进一步验证了MedGPT的临床应用价值。
2023年6月30日,成都高新海尔森医院,120多位真实患者,四川大学华西医院10位主治及以上医师以及医联AI医生,进行了一次特别的双盲实验。
患者先与医助沟通病情,医助通过线上文字输入的方式,分别传达给AI医生与真人医生,完成多轮沟通。医生开具检查单或诊断,患者可直接在医院现场完成检查,随后,患者携检查结果进行复诊,得到临床诊断及治疗方案。全程AI医生与真人医生,进行互不干涉的独立诊断。
问诊结束后,来自北大人民医院、中日友好医院、阜外医院和友谊医院的7位专家教授,针对91份有效病例进行审核,通过7个评价维度进行打分。真人医生综合得分为7.5分,AI医生的综合得分为7.2分,双方结果一致性达到了96%。
在与真人医生的对比中,MedGPT虽然在综合得分上略逊一筹,但差距并不大,且在某些方面(如知识面、开具检查项目等)甚至超过了真人医生。这充分说明了MedGPT在医学领域的可靠性和实用性。
医联院端解决方案在技术方面的优势主要体现在先进的大模型技术基础、幻觉消除技术、智能化与个性化服务以及高效的数据处理与安全保障等方面。这些优势共同构成了医联院端解决方案的核心竞争力,使其能够在医疗人工智能领域脱颖而出。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。