这篇论文探讨了不同GenAI使用目的对员工创造力的影响机制,揭示了开发性和探索性学习的中介作用,以及感知易用性的调节作用。研究发现,工作相关的GenAI使用和非工作相关的GenAI使用均能促进员工的开发性和探索性学习,进而提升增量和激进创造力。感知易用性对非工作相关的GenAI使用与员工学习的关系具有负向调节作用。论文等级:SSCI Q1
研究背景
-
研究问题:
生成式人工智能(GenAI)的不同使用目的如何影响员工的增量和激进创造力。具体来说,研究了工作相关和非工作相关的GenAI使用对探索性和开发性学习的影响,以及这些学习方式如何进一步影响员工的创造力。
-
研究难点:
如何区分不同GenAI使用目的对员工创造力的影响,如何揭示GenAI使用与员工学习之间的中介机制,以及如何考虑感知易用性对这一关系的调节作用。
-
相关研究:
现有研究主要集中在GenAI的采用阶段,探讨了影响GenAI采用的各种因素。然而,关于GenAI使用模式在采用后阶段对员工创造力的影响的研究仍然有限。此外,现有研究大多忽略了不同类型学习(如探索性和开发性学习)在GenAI使用与员工创造力关系中的作用。
研究方法
基于自我决定理论(SDT),提出了一个理论模型来探讨工作相关和非工作相关的GenAI使用对员工增量和激进创造力的影响。具体来说,
-
理论基础:
自我决定理论(SDT)指出,人类有内在的学习倾向,外部环境可以通过满足基本心理需求(自主性、胜任感和关系感)来促进这种倾向。GenAI工具通过提供智能和类人的支持,满足员工的基本心理需求,从而激发学习动机和行为。
-
研究假设:
-
工作相关的GenAI使用对开发性学习有积极影响(H1)。
-
非工作相关的GenAI使用对开发性学习有积极影响(H2)。
-
工作相关的GenAI使用对探索性学习有积极影响(H3)。
-
非工作相关的GenAI使用对探索性学习有积极影响(H4)。
-
开发性学习对增量创造力有积极影响(H5)。
-
开发性学习对激进创造力有积极影响(H6)。
-
探索性学习对增量创造力有积极影响(H7)。
-
探索性学习对激进创造力有积极影响(H8)。
-
感知易用性减弱了非工作相关的GenAI使用对开发性学习的积极影响(H9c)。
-
感知易用性减弱了非工作相关的GenAI使用对探索性学习的积极影响(H9d)。
- 理论模型:
[外链图片转存中…(img-wdybCJfj-1736249384884)]
研究方法
-
数据收集:
研究在中国进行,样本包括使用GenAI的员工。数据通过在线问卷调查收集,共收集了386份有效问卷,最终保留了330份用于分析。
-
样本选择:
样本涵盖了不同行业、年龄、教育水平和职位的员工,以确保样本的代表性和广泛性。
-
测量工具:
所有变量的测量项目均基于文献中的量表,并根据研究背景进行了调整。采用七点Likert量表进行测量,确保数据的可靠性和有效性。
结果与分析
-
测量模型:Cronbach’s alpha值和复合可靠性值均超过了阈值水平0.7,表明量表具有良好的内部一致性。平均方差提取(AVE)值超过了0.6,且所有因子负荷量均超过了0.7,表明量表具有良好的收敛效度。
-
结构模型:结构方程模型的分析结果显示,工作相关的GenAI使用和非工作相关的GenAI使用均对开发性和探索性学习有积极影响。开发性学习和探索性学习均对增量和激进创造力有积极影响。
-
中介效应:开发性学习部分中介了工作相关和非工作相关的GenAI使用对员工创造力的影响。
-
调节效应:感知易用性减弱了非工作相关的GenAI使用对开发性学习和探索性学习的积极影响,但未对工作相关的GenAI使用与员工学习的关系产生调节作用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。