论文由北京大学人工智能研究院,北京人工智能学会,华为诺亚方舟实验室,百川公司 ,阿里巴巴联合发布,提出了一种全新的全模态对齐框架,旨在通过语言反馈提升多模态大模型的指令遵循能力。这一框架不仅解决了现有数据集在模态覆盖上的局限性,还通过创新的算法和评估方法,为全模态对齐提供了一套完整的解决方案。
论文:2024.12.20_Align Anything: Training All-Modality Models to Follow Instructions with Language Feedback
代码地址:https://github.com/pku-alignment/align-anything
背景和贡献
随着人工智能技术发展,多模态模型(涉及文本、图像、音频等多种模态)成为研究热点。然而,让这些模型有效遵循人类指令并与人类意图对齐存在挑战。传统强化学习从人类反馈(RLHF)主要聚焦于语言模型,在多模态场景下的应用较少。缺乏大规模涵盖所有模态的人类偏好数据。现有数据集多局限于特定模态,如文本 - 图像对,难以满足多模态模型全面训练需求。不同模态数据在特征表示、语义理解等方面差异大,实现跨模态间准确对齐,使模型能综合理解和处理多模态指令是难题。
首次尝试使用全模态人类偏好数据对全模态模型进行微调,提出了包含20万条精心标注的全模态人类偏好数据的align-anything框架,以及从统一语言反馈中学习的对齐方法,能有效捕捉复杂模态特定人类偏好,增强模型指令遵循能力。还构建了具有挑战性的全模态能力评估框架eval-anything,以评估后训练对齐后全模态模型的性能提升。所有数据、模型和代码框架均已开源。
主要方法
论文主要关注利用好语言的丰富信息进行全模态对其,提出从语言反馈中学习的范式(Learning from Language Feedback, LLF),LLF范式主要包含以下内容:
评论模型建模:使用交叉熵损失函数,让多模态大模型拟合数据集中的语言反馈,作为评论模型。训练完成后,评论模型可对输入的问答对提供评论 。
模型自提升:让初始模型在给定好prompt的数据集上生成一系列response,再利用评论模型对此生成的评论,让初始模型针对自身的response进行修正 。
奖励建模:将修正后的response与原先的response拼接,组成偏序对,进行奖励建模,或是DPO微调 。
强化学习微调:基于训练好的奖励模型,完成完整的强化学习微调流程。
实验与结果
实验设置:北大对齐小组在多种模态上验证了从语言反馈中学习的范式(LLF)的有效性 。
结果:LLF合成的偏好对反映了更加统一的人类偏好,增强了所有模态的对齐性能。当使用二元对时,DPO和PPO在某些模态上存在负提升,但采用LLF后,在所有模态上都表现出积极的改进。有趣的是,LLF对LLaVA-13B的改进要大于对LLaVA-7B的改进,表明LLF在更强大的模型上的表现更好。
图 5. DPO+LLF 与 DPO 在不同语言反馈量上的比较。
表 4. 模型在 eval-anything 基准测试中的表现。
结论
论文提出的align-anything框架及从语言反馈中学习的对齐方法,有效解决了全模态模型与人类意图对齐的挑战,通过精心标注的全模态人类偏好数据和强化学习微调等手段,显著提升了多模态大模型的指令遵循能力,并构建了评估框架以衡量模型性能提升,为全模态对齐研究提供了重要的开源资源和方法指导。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。