融合了最近的一些思考,技术趋势,尤其是大模型带来的AIGC的改变
大模型正在迅速改变BI行业,各种功能涌现,我们也希望能做一些有趣的事情:
AIGC部分预设模板并封装用户输入的数据和分析诉求,通过对接 AIGC 接口生成可视化图表 json 配置和分析结论,返回给前端渲染。
这个智能数据分析平台项目目标是实用性的项目,它结合了Spring Boot的强大功能、MQ的消息队列机制以及AIGC(人工智能生成内容)技术,为用户提供了一个高效、自动化的数据分析解决方案,为企业提供智能商业BI服务。
项目亮点深化
自动化数据分析与AIGC技术
-
预设模板与智能生成:通过预设的数据分析模板,结合用户输入的数据和分析诉求,AIGC技术能够智能地生成可视化图表和分析结论。这不仅降低了数据分析的门槛,还极大地提高了分析效率。
-
高度定制化:预设模板支持高度定制化,用户可以根据实际需求调整分析维度、指标和图表类型,从而满足多样化的分析需求。
技术栈与数据处理
-
主流技术集成:Spring Boot、MyBatis、Redis、Elasticsearch等主流技术的集成,确保了系统的稳定性和性能。同时,这些技术也为系统的扩展和维护提供了坚实的基础。
-
数据解析与压缩:Easy Excel的引入,使得数据解析和压缩变得更加高效,降低了数据处理的成本。
-
多重校验与安全性:对用户上传的数据进行多重校验,确保了数据的准确性和系统的安全性。此外,对敏感数据的加密存储和传输也进一步增强了系统的安全性。
系统性能与可扩展性
-
分表存储与查询性能:基于MyBatis构建的自定义SQL,实现了对每份原始数据的分表存储,有效提高了查询性能。这一设计也为未来的数据增长预留了空间。
-
分布式限流与资源保护:Redisson的RateLimiter实现了分布式限流,防止了资源的滥用和系统的过载。
异步处理与可靠性
-
并发执行与异步化:自定义IO密集型线程池和任务队列的引入,使得AIGC的并发执行和异步化成为可能,进一步提高了系统的处理能力和响应速度。
-
持久化任务消息与可靠性:RabbitMQ的持久化任务消息机制,确保了任务在异常情况下的可靠性和可恢复性。
未来发展与努力方向
性能测试与优化
-
实际测试与性能提升:通过对分表存储的查询性能进行实际测试,给出具体的性能提升百分比,为系统的进一步优化提供数据支持。
-
压力测试与稳定性:对系统的整体性能进行压力测试,确保在高并发情况下系统的稳定性和可靠性。
用户体验与界面优化
-
进度条与提示信息:在前端增加进度条或提示信息,让用户能够实时了解任务的处理状态,提升用户体验。
-
交互设计优化:优化前端界面的交互设计,使其更加直观易用,降低用户的学习成本。
安全性加固与功能扩展
-
接口安全性加固:除了对用户上传的数据进行校验外,还可以考虑对系统的接口进行安全性加固,如使用JWT进行身份验证,增强系统的安全性。
-
数据分析模型与算法扩展:增加更多类型的数据分析模型和算法,以满足不同行业和用户的需求。这将进一步提升系统的实用性和竞争力。
-
数据源集成与扩展:集成更多数据源类型,如数据库、API、文件等,提高系统的灵活性和适用性。
文档与完善性
-
README文档完善:完善项目的README文档,包括项目背景、功能介绍、使用指南、部署说明等,方便用户快速上手和使用。
-
代码注释与说明:为项目的关键部分添加注释和说明,方便其他开发者理解和维护。这将有助于项目的持续发展和社区建设。
基于 Spring Boot + MQ + AIGC 的智能数据分析平台 BI
源代码
http://www.gitpp.com/stupid-ai/dpqq-bi-backend
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。