DeepSeek与医院PACS(影像归档与通信系统)的结合,通过AI技术为影像数据的智能分析、精准诊断、高效管理提供全栈支持,实现从“影像存储”到“智能决策”的跨越。
场景1:AI辅助影像诊断
功能实现:
-
病灶检测:自动标记肺结节、脑出血、骨折等异常区域,支持多平面重建(MPR)视图联动定位。
-
良恶性判别:基于影像特征(如毛刺征、钙化)预测肺癌风险等级,提供概率值及依据。
-
量化报告:自动测量肿瘤体积、CT值、ADC值等参数,生成结构化报告。
-
PACS交互:在阅片界面叠加AI标注结果,支持一键导入报告模板。
案例效果:
- 某三甲医院肺结节检出率提升25%,假阴性率下降60%。
场景2:影像质控自动化
功能实现:
-
质控规则库:检测摆位错误(如胸部CT未包括肺尖)、伪影(如金属植入物导致的星芒伪影)、曝光异常。
-
智能提醒:在影像上传PACS时自动拦截不合格影像,提示技师重拍或后处理。
-
技术亮点:结合传统图像处理算法与深度学习模型,误报率<5%。
价值体现:
- 某医院CT重拍率降低40%,设备利用率提升15%。
场景3:多模态影像融合
功能实现:
-
跨模态配准:将CT、MRI、PET影像对齐,生成融合视图(如肿瘤代谢活性与解剖结构叠加)。
-
病灶追踪:对比历史影像,自动计算肿瘤生长速率、治疗响应评估(如RECIST标准)。
-
PACS集成:在三维可视化模块中提供融合分析工具,支持多时间轴影像对比。
科研价值:
- 助力肿瘤疗效评估研究,某课题组发表SCI论文3篇。
场景4:急诊影像优先处理
功能实现:
-
危急值预警:识别主动脉夹层、脑卒中、气胸等急重症,自动推送警报至急诊科PACS终端。
-
优先级调度:根据AI识别结果调整影像处理队列,确保急诊病例优先出具报告。
-
响应机制:警报触发后,放射科医生10分钟内复核并电话通知临床科室。
临床价值:
- 某医院急性脑卒中患者DNT(入院到溶栓时间)缩短至35分钟。
场景5:基层医院远程支持
功能实现:
-
AI初筛:基层医院上传影像至云端DeepSeek,获取初步诊断建议(如肺炎/结核鉴别)。
-
三甲会诊:可疑病例通过PACS远程会诊模块发起专家复核,实现“AI+人工”双把关。
-
系统联动:与区域医联体平台对接,自动同步诊断报告至基层HIS系统。
社会效益:
- 某医联体内基层医院误诊率下降50%,患者转诊率减少30%。
场景6:科研与教学赋能
功能实现:
-
智能标注工具:半自动标注病灶边界(如勾画肿瘤ROI),支持导出DICOM-SEG格式数据。
-
特征提取库:自动计算影像组学特征(如纹理、形状、小波特征),生成CSV/Excel数据集。
-
教学案例库:基于AI筛选典型与非典型病例,构建PACS教学模块(如罕见病影像库)。
效率提升:
- 某放射科科研数据准备时间从2周缩短至4小时。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。