论文信息
Temperature-dependent variations in under-canopy herbaceous foliar diseases following shrub encroachment in grasslands
https://www.nature.com/articles/s41467-025-56439-z
代码获取
https://zenodo.org/records/14162544
论文结果图
❝
由于论文只提供了贝叶斯分析的代码,小编根据个人理解进行结果整理及绘图,与原文有所不同,仅供参考。
最终图
该分析需要注意R包的安装,需要很多依赖,具体请参考brms包官方文档
❝
https://github.com/paul-buerkner/brms
R包加载
library(tidyverse) library(brms) install.packages("tidybayes") library(tidybayes) library(openxlsx)
Result_data <- read.xlsx("Source Data.xlsx", sheet = "Fig1 to Fig6",startRow = 23) Result_data1 <- Result_data %>% dplyr::select(Site,Plot,LRRPL,MAT,MAP,LRRbiomass, LRRSoilPC1,LRRSR,LRRCWMHN,LRRMPD, LRRCWMSLA,Beta) %>% na.omit()
贝叶斯分析
bm1 <- brm(scale(LRRPL)~scale(MAT)+scale(MAP)+scale(LRRbiomass)+scale(LRRSoilPC1)+ scale(LRRSR)+scale(Beta)+scale(LRRCWMHN)+ scale(LRRMPD)+scale(LRRCWMSLA)+(1|Site), Result_data1,warmup = 5000,iter = 10000,chains = 4, control = list(adapt_delta = 0.99)) summary(bm1)
`Family: gaussian Links: mu = identity; sigma = identity Formula: scale(LRRPL) ~ scale(MAT) + scale(MAP) + scale(LRRbiomass) + scale(LRRSoilPC1) + scale(LRRSR) + scale(Beta) + scale(LRRCWMHN) + scale(LRRMPD) + scale(LRRCWMSLA) + (1 | Site) Data: Result_data1 (Number of observations: 281) Draws: 4 chains, each with iter = 10000; warmup = 5000; thin = 1; total post-warmup draws = 20000 Multilevel Hyperparameters: ~Site (Number of levels: 77) Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS sd(Intercept) 0.41 0.09 0.23 0.591.00 5046 6351 Regression Coefficients: Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS Intercept 0.00 0.07 -0.14 0.141.00 16537 15526 scaleMAT 0.17 0.08 0.02 0.321.00 16300 15146 scaleMAP -0.04 0.07 -0.19 0.101.00 16186 14722 scaleLRRbiomass 0.23 0.07 0.10 0.371.00 20369 15474 scaleLRRSoilPC1 0.01 0.06 -0.10 0.121.00 27923 16833 scaleLRRSR -0.00 0.08 -0.16 0.151.00 14809 15323 scaleBeta -0.07 0.06 -0.19 0.051.00 23559 16460 scaleLRRCWMHN 0.08 0.07 -0.05 0.211.00 20768 15267 scaleLRRMPD -0.09 0.07 -0.23 0.061.00 17473 15641 scaleLRRCWMSLA -0.10 0.07 -0.23 0.031.00 21496 16228 Further Distributional Parameters: Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS sigma 0.86 0.04 0.78 0.951.00 9479 11440 Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).`
结果解读
•模型类型: 线性混合效应模型(LMM)
•概率分布: gaussian(正态分布)
•链接函数: identity(恒等映射)
•数据集: Result_data1(包含 281 个观测值)
•贝叶斯 MCMC 采样: 4 个 chains,每个链 10000 次迭代,其中前 5000 次为 warmup,总共 20000 个后验样本。
•固定效应: MAT, MAP, LRRbiomass, LRRSoilPC1, LRRSR, Beta, LRRCWMHN, LRRMPD, LRRCWMSLA
•随机效应: (1 | Site)(站点 Site 作为随机截距)
•MAT (0.17 [0.02, 0.32]) → 显著正向影响
•LRRbiomass (0.23 [0.10, 0.37]) → 显著正向影响
非显著变量 • MAP, LRRSoilPC1, LRRSR, Beta, LRRCWMHN, LRRMPD, LRRCWMSLA → 95% 置信区间包含 0,不显著。
MAT 和 LRRbiomass 是显著的影响因子:
•MAT (气温) 越高,LRRPL 越大。
•LRRbiomass (生物量) 越高,LRRPL 也越大。
2.其他变量 (MAP, LRRSoilPC1, Beta, LRRMPD等) 不显著,影响较小。
3.站点 (Site) 存在变异性 (sd(Intercept) = 0.41),表明站点间 LRRPL 仍有一定的随机波动。
4.模型收敛良好 (Rhat = 1.00),采样充分 (Bulk_ESS, Tail_ESS > 10000),结果稳定可靠。
数据整理
# 提取后验分布 posterior_samples <- bm1 %>% spread_draws(b_scaleMAT, b_scaleMAP, b_scaleLRRbiomass, b_scaleLRRSoilPC1, b_scaleLRRSR, b_scaleBeta, b_scaleLRRCWMHN, b_scaleLRRMPD, b_scaleLRRCWMSLA) # 变量名称匹配回归系数 coef_labels <- c("MAT", "MAP", "LRR herbaceous biomass","LRR soil PC1", "LRR species richness", "Beta diversity", "LRR CWM of height", "LRR mean pairwise distance", "LRR CWM of specific left area") posterior_samples <- posterior_samples %>% pivot_longer(cols = starts_with("b_"), names_to = "Variable", values_to = "Estimate") %>% mutate(Variable = factor(Variable, levels = unique(Variable), labels = coef_labels)) # 定义因子 posterior_samples$Variable <- factor(posterior_samples$Variable, levels = c("MAT", "MAP","LRR soil PC1", "LRR herbaceous biomass", "LRR CWM of specific left area", "LRR CWM of height", "LRR species richness", "LRR mean pairwise distance", "Beta diversity") %>% rev())
数据可视化
ggplot(posterior_samples, aes(x = Estimate, y = Variable, fill=after_stat(x > 0))) + stat_halfeye() + scale_fill_manual(values = c("grey80","skyblue")) + geom_vline(xintercept = 0, linetype = "dashed", color = "red") + scale_x_continuous(limits = c(-0.4,0.6)) + theme_minimal() + guides(fill="none") + labs(x = "Estimate of LRR pathogen load",y=NULL)
关注下方公众号下回更新不迷路
购买介绍
❝
本节介绍到此结束,有需要学习R数据可视化的朋友欢迎到淘宝店铺:R语言数据分析指南,购买小编的R语言可视化文档,2025年购买将获取2025年更新的内容,同时将赠送2024年的绘图文档内容。
更新的绘图内容包含数据+代码+注释文档+文档清单,小编只分享案例文档,不额外回答问题,无答疑服务,更新截止2025年12月31日结束,零基础不推荐买。
案例特点
❝
所选案例图绝大部份属于个性化分析图表,数据案例多来自已经发表的高分论文,并会汇总整理分享一些论文中公开的分析代码。
2025年起提供更加专业的html文档,更加的直观易学。文档累计上千人次购买拥有良好的社群交流体验,R代码结构清晰易懂.
目录大纲展示
群友精彩评论
2025年更新案例图展示
2024年案例图展示
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。