CryptoPulse:结合宏观波动、技术指标和货币价格变化的加密货币日收盘价预测模型

CryptoPulse: Short-Term Cryptocurrency Forecasting with Dual-Prediction and Cross-Correlated Market Indicators

加密货币因市场波动和技术创新(如区块链)而受到关注,投资者寻求短期高回报,导致市场波动加剧,给投资者带来挑战。

本文CryptoPulse,一种双重预测机制,结合宏观波动、技术指标和个别加密货币价格变化,预测次日收盘价。引入市场情绪基础的重标定和融合机制,提升预测准确性。实验结果显示,CryptoPulse在所有情况下显著优于比较方法,前五个加密货币的MAE提升10.4%至63.8%,MSE提升17.2%至69.0%。扩展到前10、15、20个加密货币时,MAE提升42.2%至46.9%,MSE提升41.8%至47.9%。

img

论文地址:https://arxiv.org/pdf/2502.19349

摘要

加密货币市场波动性大,给投资者带来挑战。现有预测系统主要基于历史模式,忽视了三个关键因素:

  • 宏观投资环境对投资者行为的影响。
  • 新闻影响下的市场情绪对投资策略的作用。
  • 技术指标在短期价格变动中的重要性。

本文提出一种双重预测机制,结合宏观波动、技术指标和个别加密货币价格变化,预测次日收盘价。引入市场情绪基础的重标定和融合机制,提升预测准确性。实验结果显示,该模型在大多数情况下超越十种对比方法,达到最先进的性能。

简介

加密货币因市场波动和技术创新(如区块链)而受到关注,投资者寻求短期高回报,导致市场波动加剧。传统机器学习方法(如SVM和随机森林)在加密货币价格预测中表现不稳定,无法捕捉复杂市场动态。深度学习模型(如LSTM、CNN-LSTM)已被用于预测主要加密货币价格,但多集中于市值较高的货币,忽视了流动性较低的货币。近期研究尝试结合市场情绪和历史价格数据进行预测,但通常局限于比特币和以太坊,且情绪数据标注过程繁琐。

本文提出“CryptoPulse”框架,通过以下三方面进行次日收盘价预测:

  • 实时新闻反映的市场情绪。
  • 目标加密货币的历史数据和技术指标。
  • 主要加密货币的宏观投资环境波动。

主要贡献包括:

  • 制定了一个新的框架,用于次日的加密盈利预测,利用对关键市场指标的短期观察,包括市场情绪、宏观投资环境、技术指标和内在定价动态。
  • 设计了一种新颖的激励策略,使用了基于少样本学习和基于一致性的标定方法,对加密新闻进行有效的市场情绪分析。
  • 开发了一种双重预测机制,将基于宏观条件和加密货币动态的价格预测分开,然后利用市场情绪驱动的策略将价格预测融合在一起,以提高准确性
  • 对一个新策划的大型真实世界数据集进行了广泛的评估,以证明我们的模型在预测下一天的价格时的有效性。

问题建模

C = {c_i}^N 表示N种加密货币的历史价格数据,c_i = {f_t}^T 是特征向量序列,包含开盘、收盘、最高、最低价格、交易量及技术指标。D = {d_t}^T 是每日从Cointelegraph收集的新闻文章集合。目标是预测目标加密货币在第t+1天的收盘价,基于l天的历史市场价格、技术指标和相关新闻。

img

该问题对自动化加密货币交易,尤其是中频交易策略至关重要。

CryptoPulse

CryptoPulse包含三个主要组件:

  • 基于宏观市场环境的次日波动预测
  • 基于价格动态的波动预测
  • 基于市场情绪的双重预测重标定与融合

采用预处理步骤,通过计算技术指标准备输入数据,利用过去几天的价格数据捕捉市场模式。

img

基于技术指标的预处理

技术指标概述:使用七种常见技术指标预测市场动向,包括随机指标(%K和%D)、威廉指标、累积/分配振荡器、动量、差异7和变化率(ROC)。

随机指标 %K:衡量当前收盘价相对于过去14天的最高低价,值>80表示超买,<20表示超卖。

img

随机指标 %D:%K的3日简单移动平均,平滑波动以确认买卖信号。

img

威廉指标 %R:衡量收盘价在过去14天高低范围内的位置,值<-80表示超卖,>-20表示超买。

img

累积/分配振荡器:测量市场买卖压力,振荡器上升表示买入压力增加,下降则表示卖出压力增加。

img

动量指标:计算特定时期内价格变化率,反映趋势的潜在反转或延续。

img

差异7:当前价格与7日移动平均的比较,正值表示超买,负值表示超卖。

img

变化率(ROC):比较当前价格与12天前价格,快速变化的高值表示价格上升,低值或负值可能表示下降。

img

基于宏观市场环境的波动预测

宏观市场环境(如黄金和美元价值、政策等)对加密货币价格波动有重要影响,但量化这一环境较为困难。本文提出利用前n大加密货币的集体行为作为宏观投资环境的代理。通过1D卷积层和正弦位置编码处理目标加密货币和前n大加密货币的市场数据(开盘价、收盘价、高、低、交易量)。目标是学习哪些市场行为子系列能有效近似宏观投资环境,使用注意力机制进行相关性调节。最终利用学习到的宏观投资张量预测目标加密货币的次日收盘价波动。

img

img

价格动态波动预测

预测加密货币价格时,直接预测次日收盘价效果不佳,因市场波动性大。建议先预测价格波动,再结合前一日收盘价重构次日价格。使用Transformer和线性层的模型设计效果相似,采用NLinear结构预测波动,利用线性层和前一日收盘价进行归一化。

img

市场情绪导向双预测重测与融合

市场情绪对加密货币波动影响显著,但传统情绪分析难以实时应用。利用大型语言模型(LLM)进行情绪分析,设计有效的提示策略至关重要。结合“智囊团讨论”式提示与少量学习技术,模拟交易者对新闻的情绪反应,采用3-way-kshot学习提高准确性。市场情绪可用于规范波动预测范围,通过嵌入情绪向量并结合价格动态预测,增强模型在不同加密货币上的泛化能力。

img

实验

数据集

数据集来源于多个渠道,主要包括:

  • 历史价格数据:来自Yahoo Finance,涵盖2021年1月1日至2024年4月1日的75种市值超过80亿美元的加密货币,代表92.18%的市场总市值。
  • 技术指标:基于价格数据计算的七种常用技术指标。
  • 加密市场新闻:从Cointelegraph收集的25,210篇新闻文章,时间范围同样为2021年1月1日至2024年4月1日。

数据集的全面性有助于研究结果的普遍适用性。

实验设置

观察窗口固定为7天,数据集按7:1:2比例划分为训练、验证和测试集,结果平均五次实验。

评估指标包括均方误差(MSE)、平均绝对误差(MAE)和交叉相关(CORR),用于比较预测价格与真实价格的相似性。交叉相关指标经过归一化处理,确保结果在0到1之间,值越接近1表示预测越准确。

img

比较方法包括十种最先进的基线模型,涵盖四种时间序列预测方法、三种RNN方法、一种混合RNN方法和两种传统机器学习方法,所有模型使用相同设置,移动窗口方法窗口大小设为3。

结果

评估模型CryptoPulse与十个SOTA模型的性能,主要针对市值前五的加密货币及前10、15、20的平均表现。CryptoPulse在所有情况下显著优于比较方法,前五个加密货币的MAE提升10.4%至63.8%,MSE提升17.2%至69.0%。扩展到前10、15、20个加密货币时,MAE提升42.2%至46.9%,MSE提升41.8%至47.9%。模型设计有效,结合宏观经济环境、技术指标和市场情绪分析提升预测性能。

img

传统机器学习模型(如SVM和RF)表现不如深度学习模型,可能因表达能力不足。通过消除情绪数据的消融研究,发现传统模型仍然表现较差,进一步验证了其表达能力的不足。

img

RNN模型仍在某些情况下表现良好,GRU相对其他RNN模型表现最佳,尤其在处理动态的加密货币数据时不易过拟合。RNN模型的预测与真实值的相关性更稳定,尽管没有单一模型始终优于其他模型。

img

线性模型并不总是优于Transformer模型,DLinear和Linear在某些情况下表现不如Autoformer,而NLinear则稳定超越Autoformer。线性模型未能有效考虑不同时间序列间的相关性,Transformer模型在处理复杂相关性方面表现更佳。DLinear和Linear模型在高波动性环境下表现不稳定,尤其在使用MSE作为评估指标时。

img

趋势分析在时间序列预测中重要,DLinear和Autoformer模型显式考虑趋势模式。不当调节移动平均趋势可能导致DLinear模型不稳定,尤其在加密货币市场的极端波动下。Autoformer在平衡季节性和趋势周期成分方面表现更佳,预测结果更稳定。短观察窗口是必要的,因为加密货币市场中长期模式稀少,影响次日预测。

消融分析

通过消除新闻情感数据进行消融研究,发现情感数据能提升加密货币预测性能,但NLinear在5个案例中表现优于全特征集,原因是情感标签作为时间序列可能引入噪声。DLinear和Linear模型在有无情感数据的表现差异显著,显示出不稳定性。

img

消除技术指标后进行的消融研究表明,包含技术指标能提升模型性能,DLinear和Autoformer受益最大,而我们的模型略有改善。技术指标基于金融领域知识,能帮助自动化趋势分析模型获得更好的洞察。

img

鲁棒性

通过计算5次独立实验中MAE的标准差,比较不同模型的稳健性,结果针对前5、10、15、20种加密货币进行平均。较低的标准差表示模型在不同训练运行中的一致性和稳健性。重点关注Linear-based、Transformer-based模型及我们的模型,因其在所有实验中表现最佳。我们的模型在前10、15、20种加密货币的训练中标准差最小,前5种的表现与最佳模型相当。我们的模型在市值较小(通常更波动)的加密货币上表现尤为稳健,而Linear和DLinear模型在此方面表现较差。

img

总结

本文提出“CryptoPulse”模型,用于预测加密货币的次日收盘价。模型整合三大因素:宏观环境波动、个别加密货币价格及技术指标变化、市场情绪。采用双重预测机制,捕捉宏观市场环境与目标加密货币的动态。融合市场情绪信息以提升预测结果。实验评估显示,该模型在预测加密货币波动方面优于十种不同方法,适用于高度不确定的加密市场。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值