研究背景
在能源存储、碳捕获、催化等关键技术不断发展的当下,功能材料的设计已成为推动科技进步的重要驱动力。传统材料发现主要依赖人类专家的经验和实验反复试错,不仅周期长、成本高,而且探索空间有限。近年来,随着高通量筛选方法、开放材料数据库和机器学习性能预测模型的发展,材料设计进入数据驱动时代,使得数十万种材料可以被快速筛选,从而显著加速了发现过程。然而,这种筛选范式本质上仍受限于已有材料的组合,难以跳出“已知材料”的边界,无法系统性地发现具有特定性质的新型结构。
为突破上述局限,研究者转而关注“逆向设计”——直接从目标性质出发生成满足要求的材料结构。生成模型,尤其是扩散模型和变分自编码器(VAE),在该方向表现出巨大潜力。但现有模型存在多个挑战:生成结构稳定性差、只能处理少数元素种类、以及无法同时满足多个性质约束。因此,亟需一种能够在整个元素周期表范围内生成稳定、多样化且可控材料结构的通用模型,以推动材料设计从“筛选候选”走向“智能创造”。
研究内容
本研究提出了一种面向无机材料设计的通用生成模型——MatterGen,基于扩散模型框架,首次实现了在全元素周期表范围内稳定生成晶体结构,并可灵活满足多种性质约束。
首先,作者设计了适用于晶体材料的联合扩散过程,将晶体结构表示为原子类型、坐标和周期性晶格三部分,并分别定义了具有物理意义的扰动机制。通过引入等变的打分网络,模型能在去噪过程中保留晶体的对称性与结构特征。
其次,作者构建了包含60余万种稳定材料结构的大规模训练数据集(Alex-MP-20),用于预训练基础模型,使其具备生成稳定、多样材料的能力。在此基础上,通过引入adapter模块进行微调,MatterGen可适配不同目标任务,包括化学系统探索、晶体对称性控制、以及磁性、电子、力学等标量性质的优化。
在具体应用中,MatterGen在27个不同化学体系中均优于传统方法(如替代法和随机结构搜索),尤其在多元素体系中显示出更高效率。在性质导向设计中,MatterGen成功生成了满足高磁密度、高带隙、高体模量等目标的结构,并可联合优化如“高磁性+低供应链风险”等多目标任务。
最后,研究通过合成并测试生成的TaCr₂O₆结构,验证了模型生成材料的实验可行性,进一步提升了其实用价值。
图文解析
图1:无机材料的生成式设计流程
图1展示了MatterGen模型用于无机材料生成的总体流程,包括扩散生成过程、打分网络结构和微调机制。图1a展示了材料生成的扩散流程。扩散模型首先定义一个“前向腐蚀过程”,将稳定材料逐步扰乱成随机结构(通过扰动原子类型A、坐标X、晶格L),再通过学习的“反向去噪”过程从随机初态中逐步生成出稳定的晶体结构。该机制是基于扩散概率模型的物理建模思路,适配了晶体结构的周期性特征。图1b展示了核心的“等变打分网络”。该网络在大规模稳定晶体数据集上预训练,能够同时预测结构中三个要素的梯度方向,即原子类型、原子位置和晶格形状的去噪路径。等变性确保模型输出在平移、旋转、镜像下保持一致性,符合晶体结构的物理对称特性。图1c展示了微调后的生成过程。在模型中引入“adapter模块”,用于嵌入目标属性(如化学成分、晶体对称性、磁密度等)的编码,从而实现对生成材料的性质控制。模型可根据这些标签条件化生成具有目标性质的材料。
图2:生成稳定、独特、新颖的无机材料
图2展示了MatterGen生成晶体结构的稳定性、结构新颖性和与已有模型的比较。图2a展示了4个随机生成晶体的结构示意图,包括化学式和空间群。图2b展示了所生成结构的能量高于凸包的分布情况,表明大多数结构在DFT能量上是稳定的。图2c展示了生成结构与DFT优化后结构之间的RMSD分布,大多数结构变化极小,接近真实最小能量构型。图2d展示了随着生成数量增加,生成结构中“唯一”与“新颖”的比例保持较高,表明模型具备持续探索新材料的能力。图2e-f展示了与多个主流模型(CDVAE、DiffCSP等)在S.U.N.比例和RMSD方面的比较,MatterGen表现最优。
图3:在目标化学系统中生成材料
图3展示了MatterGen在特定化学体系(如V-Sr-O)中的材料生成能力。图3a-b展示了在27个化学系统中生成的S.U.N.结构比例,分别按系统类型和元素数量分组,MatterGen在各类系统中均表现优异。图3c-d展示了各方法在凸包上的发现结构数量,MatterGen在五元系统中优势尤为明显。图3e展示了V-Sr-O体系的能量凸包图,不同颜色表示结构由不同方法生成。图3f-i展示了MatterGen在该体系中发现或重新发现的4个结构,包括其化学式和空间群。
图4:设计具有目标磁性、电子和力学性质的材料
图4展示了MatterGen在三个性质目标(磁密度、带隙、体模量)下的逆向设计能力。图4a-c展示了生成的S.U.N.结构在磁密度(0.2 Å⁻³)、带隙(3.0 eV)和体模量(400 GPa)目标值下的分布。尽管这些目标值均处于原始训练数据的分布尾部,但生成结构在目标附近明显富集,显示出强大的“属性控制力”。图4d-f展示了每个任务中最佳结构的晶体示意图,配合其性质值、空间群和化学式。模型不仅生成目标值附近样本,还能发现多个不同成分和空间群下的候选。图4g-h评估在给定180次DFT预算下,MatterGen相比ML预测筛选方法能发现更多满足极端目标的S.U.N.结构,尤其在高体模量材料任务中,效果提升2倍以上。
图5:设计低供应链风险的磁性材料
图5展示了MatterGen在联合优化磁性与供应链风险(HHI指标)方面的能力。图5a展示了单目标(磁密度)优化与多目标(磁密度+低HHI)优化下生成结构在性质空间的分布。图5b展示了两种模型生成的S.U.N.结构中元素的出现频率,联合优化后高风险元素如Co、Gd显著减少。图5c展示了联合优化生成的代表性结构,位于“帕累托前沿”,同时具有高磁性和低供应链风险。
图6:生成结构的实验验证
图6展示了MatterGen生成结构的实际合成与性能验证结果。图6a展示了TaCr₂O₆样品的XRD测量与Rietveld精修拟合图,确认结构匹配。图6b展示了MatterGen生成的目标结构(TaCr₂O₆)的三维模型及其DFT预测体模量(222 GPa)。图6c展示了合成得到的无序结构模型,空间群一致,验证结构可靠。图6d展示了生成的结构中与ICSD数据库中已知结构匹配的101个样本在体模量预测上的分布,平均误差较低,进一步说明生成结果可信。
结论与展望
本研究提出的MatterGen模型显著推动了材料逆向设计的发展。通过创新的联合扩散机制和大规模训练数据,MatterGen不仅能够在元素周期表范围内高效生成稳定、独特且新颖的无机材料结构(S.U.N.结构),还可通过微调实现对化学成分、晶体对称性以及多种性质(如磁密度、带隙、体模量等)的精准控制。相比现有主流生成模型和结构搜索方法,MatterGen在生成效率和材料质量上均取得显著突破,并首次通过实验成功合成和验证了所设计材料的性能,证明其生成结果具有现实可实现性。展望未来,MatterGen仍存在进一步优化空间,如提升对高对称性结构的建模能力、扩展到金属有机框架和催化表面等更多材料体系,以及引入对非标量性质(如带结构、XRD谱图)的约束能力。随着模型结构和数据资源的持续改进,MatterGen有望成为面向多领域材料发现的通用基础模型,推动材料科学迈入智能设计新时代。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。