简介
OmniTalker 是一个由 阿里巴巴集团 Tongyi Lab(通义实验室) 开发的研究项目,专注于实时文本驱动的说话头像生成技术。该项目旨在通过文本输入生成同步的语音和视频内容,同时保留参考视频中的音视频风格。以下是关于 OmniTalker 项目背景的详细介绍,基于公开信息和其学术研究导向:
发起背景
- 时间:OmniTalker 的研究成果于 2025 年 4 月在 arXiv 上发布(论文编号 arXiv:2504.02433),由 Zhongjian Wang(王中建)、Peng Zhang(张鹏)、Jinwei Qi(齐金伟)等人共同撰写。
- 团队:项目由阿里巴巴集团的通义实验室主导,这是一个专注于 AI 技术创新的内部研究部门,涉及多模态生成、语音合成和视觉计算等领域。
- 动机:随着大语言模型(LLM)和生成式 AI 的发展,人机交互从纯文本向多模态(语音+视频)演进的需求日益增加。传统的文本驱动说话头像生成依赖级联管道(TTS + 音频驱动视频),存在延迟高、音视频不同步、风格不一致等问题。OmniTalker 旨在解决这些痛点,推动更自然、实时的交互体验。
技术背景
- 研究现状:在 OmniTalker 之前,说话头像生成(Talking Head Generation, THG)主要依赖音频驱动方法(如 SadTalker、Wav2Lip),从文本到视频的端到端生成研究较少。现有方法通常将文本转语音(TTS)和音频驱动视频生成分开,导致系统复杂性和风格失配。
- 创新驱动:OmniTalker 提出了一个统一的端到端框架,利用多模态扩散变换器(Diffusion Transformer)同时生成语音(mel-spectrograms)和视频(头部姿态和面部动态),并通过音视频融合模块实现同步性和风格一致性。这种方法在业界尚属首创,尤其是在零样本(zero-shot)场景下。
- 应用潜力:项目强调其实时性(25 FPS)和风格保留能力,适用于虚拟助手、视频聊天、数字人生成等场景,与阿里巴巴的 AI 生态(如通义千问)有潜在协同效应。
项目目标
- 核心愿景:将文本驱动的交互升级为多模态体验,解决传统方法的冗余计算、错误累积和风格不匹配问题。
技术突破:
- 统一建模:将语音和视频生成整合到一个模型中,避免级联管道的复杂性。
- 零样本学习:通过单一参考视频捕获语音和面部风格,无需额外训练或风格提取模块。
- 实时性:模型参数量仅 0.8B(8 亿),推理速度达 25 帧/秒,适合实时应用。
- 学术贡献:论文展示了 OmniTalker 在生成质量、风格保留和音视频同步性上的优越性,超越了现有方法。
数据与训练
数据集:OmniTalker 使用大规模多模态数据集(视频、音频、文本)从头训练,具体数据来源未公开,但论文提到自动化预处理系统支持数据扩展。
训练方法:采用多阶段训练策略,结合随机序列掩码技术,增强模型的上下文预测能力。
性能对比
TTS对比
驱动模型之间的对比
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。