智能体快速入门,不可不知的60个AI Agent术语

大语言模型取得突破性进展之后,AI Agent已然成为最具变革性的核心概念,其所涵盖的领域极为广泛且仍在不断演进。

AI Agent是人工智能领域的核心概念,它描述了一种能够自主感知环境、进行思考(包括推理和规划)、做出决策并执行行动以实现特定目标的计算实体。

与仅仅执行预设指令的传统程序不同,AI Agent具备更高的智能体性,能像人类一样与复杂多变的世界进行交互。它们的运作流程通常是一个闭环:通过感知器(如摄像头、传感器、用户输入)获取环境信息,然后通过其“大脑”(通常是大语言模型或专门的推理模块)处理这些信息,进行规划和决策,并最终通过执行器(如机械臂、API调用)实际执行行动,以实现在动态环境中达成目标。

随着对AI Agent关注的日益增长,围绕它们的词汇也随之丰富起来。像“工具使用(Tool Use)”和“反思(Reflection)”这样的术语不再局限于学术论文;它们现在是开发者、商业高管和爱好者在这个领域中不可或缺的词汇。

无论是探索Agent如何通过强化学习(RL)进行“学习”,还是剖析它们通过多智能体系统(MAS)进行协作的能力,理解这些专业词汇对于理解它们的功能、局限性以及伦理影响都至关重要。

这篇AI Agent术语指南介绍了应该掌握的60个智能体相关术语,希望能够帮助大家更好地学习与理解AI Agent。

AI Agent 术语表

**1.AI Agent(*智能体*AI代理)

一种能够感知环境、进行推理、做出决策并执行动作以实现特定目标的自主计算实体。它不仅仅是一个程序,更是一个具备一定智能体性的系统,其工作流程是一个感知-思考-行动的闭环。例如,一辆自动驾驶汽车通过摄像头、雷达、激光雷达等感知器获取路况信息,然后通过其内置的AI系统进行决策(如加速、减速、转向),并通过执行器(如油门、刹车、方向盘)实际执行这些行动,以实现在道路上安全行驶的目标。

img

**2.Autonomous Agent(自主智能**代理)

特指那些在设定的规则和目标框架内,能够独立运行,无需人类持续干预或监督的AI Agent。自主性是AI Agent的重要特征之一,高自主性的Agent能应对未预见的情况,并根据新信息调整其行为。例如,物流无人机不仅能选择最佳路线,还能自主避开突发障碍(如突然出现的鸟群),甚至在电量不足时自主寻找充电点,并在充电完成后继续完成包裹递送。

3.Action(行动)

AI Agent为实现其目标而采取的具体操作或行为。行动可以是物理的(如机器人的移动、抓取),也可以是数字的(如发送消息、更新数据库、调用API)。AI Agent的行动通常是其规划和决策过程的最终输出。例如,一个客服聊天机器人收到用户查询后,“行动”可能是查询数据库,然后生成并发送包含订单更新信息的回复。

4.Actuators(执行器)

AI Agent中负责执行行动的组件,它们是实现AI Agent与环境交互的物理或虚拟“手臂和腿”。在物理机器人中,Actuators通常是电机、液压系统;在虚拟或软件Agent中,Actuators则是软件接口、API调用、命令执行器,例如一个自动化数据分析Agent的Actuator可能是调用一个数据处理函数

5.Brain of an AILLMAI的大脑–大语言模型)

在许多现代AI Agent中,**大语言模型(Large Language Model,LLM)**扮演着核心的“认知引擎”或“大脑”角色,负责理解、推理、生成和决策。LLM通过学习海量文本数据,掌握了丰富的世界知识、语言理解和生成能力,以及一定程度的推理能力,使得AI Agent能处理更广泛、更开放的任务。

img

6.Small Language Model(SLM)(小型语言模型)

相对大语言模型而言,参数量和计算需求较小的语言模型。SLM更轻量级、运行效率更高,虽然通用能力可能不如LLM,但在特定任务或资源受限的环境中具有显著优势,可部署在边缘设备(Edge Devices)上实现离线处理或低延迟响应。

7.World Model(世界模型)

AI Agent对其所处环境的内部模拟或表征,Agent利用它来预测行动的后果,并进行规划。它是Agent进行规划和决策的关键组成部分,允许Agent在实际执行行动之前,在“脑海中”模拟不同的行动序列并评估其潜在结果。

**8.Tokens(令牌)****😗*大语言模型处理文本的最小单位

一个单词通常被分解成一个或多个Tokens,标点符号和空格也可能是独立的Tokens。LLM通常有上下文窗口(Context Window)的限制,即它们一次能够处理的Tokens数量是有限的,理解Tokens对于优化提示(Prompts)、管理输入长度和估算API成本非常重要。

9.Prompts(提示)

用户向AI Agent(特别是大语言模型)提供的文本输入或指令,用于引导Agent的理解、推理和生成行为。提示工程(Prompt Engineering)是研究如何设计有效的Prompt以最大化AI Agent的性能和准确性的艺术和科学,不同的Prompt策略(如思维链提示(Chain-of-thought Prompting))可以显著影响Agent的推理能力。

10.Context Window(上下文窗口)

大语言模型或AI Agent在一次处理中能够记住或考虑的Tokens数量限制。它是Agent的“短期记忆(Short-term memory)”范围,当对话或任务的长度超过Context Window时,Agent可能会“忘记”早期的信息。拥有更大Context Window的Agent能够处理更长的文档、进行更复杂的推理,并保持更长时间的连贯对话。

img

11.Hallucinations(幻觉)

当AI Agent(特别是大语言模型)生成看似合理但实际上是虚构、不正确或与现实不符的信息时,这种现象被称为“幻觉”。Hallucinations是当前LLM面临的一个主要挑战,它们并非故意撒谎,而是模型在生成过程中产生,解决Hallucinations问题是提高AI Agent可靠性和可信度的重要研究方向。

12.Temperatures(温度)

在大语言模型的文本生成过程中,控制输出随机性或创造性的一个超参数。温度值通常介于0到1之间,低温(如0.2)使输出更确定、保守和可预测,适用于需要精确事实的任务;高温(如0.8)则使输出更具多样性、创造性和意外性,适用于内容生成、头脑风暴或需要发散思维的任务。

13.Reference Actions(参考行动)

AI Agent在学习或执行过程中可以参考的、经过验证的成功行动或行为范例。它们可以作为Agent学习的“榜样”或“指导”,用于强化学习中的奖励塑形,或在决策过程中作为一种**启发式(Heuristic)**信息,有助于Agent在复杂环境中快速收敛到有效策略。

14.Standard Actions(标准行动)

AI Agent预定义好的、可以直接执行的原子级或基础级动作,它们构成了Agent行动能力的基本集合。这些行动是Agent与其环境交互的最基本操作,无需进一步的推理或规划,Agent通过组合这些基本行动来完成更复杂的任务,例如网页爬虫的“点击链接”或机器人的“向前移动”。

15.System Actions(系统行动)

AI Agent在幕后执行的、不直接与用户交互但对系统运行至关重要的操作。这些行动通常与Agent的内部管理、资源优化、环境维护等有关,例如数据分析Agent的“加载数据集”或“清理内存”,用户通常感知不到

16.Standard Topics(标准主题)

AI Agent经过训练,能够有效处理的特定领域或类型的问题/对话。许多AI Agent(尤其是Chatbot)在设计时会专注于处理某些特定主题或业务范围,以提高其效率和准确性,通常对应于高频、重复性的任务。

17.Memory Modules(记忆模块)

AI Agent用于存储和检索信息的内部结构或组件,使其能够学习、回顾和利用过去的经验来指导未来的决策。它们是AI Agent维持上下文(Context)和实现持续学习(Continuous Learning)的关键,可以分为短期记忆(Short-term memory)和长期记忆(Long-term memory)。

img

18.Long-term memory(长期记忆)

AI Agent用于持久存储和检索信息(通常是关键知识、学习到的经验或历史交互数据)的机制,这些信息可以在不同会话或长时间内保持。与Short-term memory不同,Long-term memory的容量通常更大,且信息在Agent关闭后不会丢失,使得AI Agent能够积累经验,在未来的交互中表现得更智能、更个性化。

19.Short-term memory(短期记忆)

AI Agent用于临时存储当前会话或任务相关信息的机制,容量有限,且通常在会话结束后清除。Context Window就是Short-term memory的一个具体体现,它对于确保AI Agent在当前交互中保持相关性和流畅性至关重要,例如Chatbot需要它来记住用户最近说过的话。

20.Federated Learning(联邦学习)

一种分布式机器学习范式,允许多个客户端(AI Agent或设备)在本地训练模型,然后只将学习到的模型更新(而不是原始数据)发送给中央服务器进行聚合,从而在保护数据隐私的同时,实现模型的共同学习和提升。这解决了数据隐私和数据主权问题,尤其适用于敏感数据领域。

21.Chain-of-thought Prompting(思维链提示)

一种提示工程技术,通过要求大语言模型在给出最终答案之前,先生成一系列中间的推理步骤或“思考过程”,从而提高其解决复杂问题的能力。这种技术模仿了人类解决问题的过程,不仅提高了模型性能,也使得模型的决策过程更具可解释性(Interpretability)和可追溯性(Traceability)。

22.ReAct(Reasoning and Acting)(推理与行动)

一种结合了**推理(Reasoning)和行动(Acting)的AI Agent范式,Agent在每个步骤中交替进行思考和执行。它是当前构建复杂AI Agent的流行方法之一,允许Agent在执行任务时,动态地进行反思(Reflection)**和调整,从而处理更复杂的任务并具备更强的适应性。

img

23.Function Calling(函数调用)

AI Agent(特别是大语言模型)识别用户意图并自动生成调用外部函数或API所需的参数的能力,从而执行实际的、真实世界的任务。这是实现AI Agent Tool Use的关键技术之一,当LLM接收到用户请求时,它能够识别出需要某个外部工具来完成,并生成标准化的函数调用格式

24.Goal(目标)

AI Agent被编程或设计来努力实现的状态、结果或任务。目标是驱动AI Agent行为的根本动力,它可以是简单的(如“到达目的地”),也可以是复杂的(如“最大化用户满意度”),Agent的所有行动和规划都围绕着其预设的Goal。

25.Utility Function(效用函数)

AI Agent用来量化不同结果或状态“价值”的数学函数,帮助Agent在多种选择中做出最优决策。它本质上是AI Agent的“偏好”系统,将可能的行动结果映射到一个数值,Agent的目标就是最大化这个效用值,如在下棋AI中为赢得比赛赋予高分。

26.Heuristic(启发式)

AI Agent在复杂问题中寻找近似最优解或在有限时间内做出快速决策时,所使用的经验法则、简化策略或“捷径”。启发式方法不保证找到最优解,但通常能找到足够好的解且计算效率高,适用于许多计算上不可行或耗时过长的复杂问题。

27.ReWOO(Reasoning WithOut Observations)(无观察推理)

一种使AI Agent在执行任务时能够进行推理,但避免在推理过程中直接访问外部观测或工具(Tools),从而提高效率和可控性。ReWOO强调“先思考,再行动”,并在思考阶段尽量减少对外部资源的依赖,有助于减少不必要的API调用或外部交互。

img

28.Belief State(信念状态)

AI Agent对其当前环境状态的内部表征或“理解”,通常基于其感知到的信息和历史数据。它是Agent做出决策的基础,即使在感知信息不完整或存在不确定性时(如传感器读数有误差),Belief State也能是一个概率分布,表示Agent对各种可能状态的“信念”程度,从而做出“有根据的猜测”。

29.Agentic RAG(代理增强生成)

一种增强的检索增强生成(Retrieval-Augmented Generation,RAG)技术,它使AI Agent能够更智能地进行信息检索、推理和自我修正(Self-correction),从而提升其决策和输出的准确性。与传统RAG不同,Agentic RAG引入了Agent的“主动性”和“迭代性”,会主动进行多轮提问和迭代式搜索,甚至进行**反思(Reflection)**以优化搜索策略,使得AI在进行复杂研究或生成报告时能像人类专家一样深思熟虑。

30.Chatbot(聊天机器人)

一种通过文本或语音与人类进行对话的AI Agent。它们利用**自然语言处理(Natural Language Processing,NLP)技术理解用户意图,并生成自然、连贯的回复,广泛应用于客户服务、信息咨询和自动化任务(如预订、下单)。现代Chatbot,如ChatGPT,已具备强大的上下文理解(Context Understanding)和多轮对话(Multi-turn Conversation)**能力。

31.Agentic AI Design Patterns(代理AI设计模式)

构建AI Agent时采用的结构化、可复用的方法论和架构范式,旨在赋予Agent感知、思考和行动的能力。这些模式为开发者提供蓝图,包括注重内部模型和长期策略的深思熟虑型Agent(Deliberative Agents),以及注重即时响应的反应型Agent(Reactive Agents)。它们增强了Agent的灵活性和在动态环境中决策的能力。

32.Reflection(反思)

AI Agent评估自身表现、输出质量或决策过程的能力,并根据评估结果进行自我调整或学习。这是AI Agent实现**自我改进(Self-improvement)和适应性(Adaptability)的关键机制。当Agent完成一项任务或生成一个输出后,它会“停下来思考”:我的输出是否满足要求?我的决策过程是否有缺陷?这种内省(Introspection)**过程有助于Agent学习并随时间扩展其能力。

33.Planning(规划)

AI Agent通过预测未来的行动序列及其结果,以制定实现特定目标的策略或行动方案的能力。它涉及构建世界模型(World Model),预测不同行动路径的后果,评估这些后果与目标之间的差距,并选择一条最佳路径,是高级AI Agent的一个标志性特征

34.Tool Use(工具使用)

指AI Agent调用外部系统、API、应用程序或执行特定功能的能力,以扩展其能力范围并完成超出其核心模型能直接处理的任务。例如,一个AI Agent被问及“明天的天气如何?”,它会识别到需要天气信息,然后调用一个天气API(工具)来获取数据,再将数据整合到其回复中。这极大地增强了AI Agent的实用性和功能性。

img

35.Multi-Agent(多代理)

指涉及多个AI Agent协同工作以实现共同目标或解决复杂问题的情况,通常是多智能体系统(Multi-Agent System,MAS)的简化说法。在Multi-Agent场景中,每个Agent可能拥有不同的能力、知识或角色,它们通过通信(Communication)、**协作(Cooperation)甚至竞争(Competition)**来共同完成一个宏大的任务,如自动驾驶车队中的车辆相互协调。

36.Agentic Workflow(代理工作流)

AI Agent自主地感知、规划、执行和反思任务的结构化、迭代式过程,通常以最小的人工干预实现目标导向的自动化。Agentic Workflow强调的是Agent的自主循环,Agent会根据环境反馈和其信念状态(Belief State),动态地调整其规划和执行,包含多次迭代和自我修正。

37.Multi-Agent System(MAS)(多智能体系统)

一个由多个相互作用的自主AI Agent组成的系统,这些Agent协同工作以实现共同目标,或通过交互解决复杂的分布式问题。每个Agent可能具有不同的能力、知识、目标或角色,它们通过通信协议、协调机制甚至博弈理论来管理彼此的交互,应用于分布式决策、机器人编队等。

38.Simple-Reflex(简单反射)

一种最基本的AI Agent类型,它仅仅根据当前的感知信息做出即时反应,不考虑历史状态或未来后果。Simple-Reflex Agent通常通过“条件-动作”(If-Then)规则工作,没有内部的World Model或Memory,适用于许多确定性、低复杂度的场景。

39.Hierarchical Multiagent(分层多智能体)

一种Multi-Agent System的组织结构,其中Agent按照不同的层级(如主管、经理、工人)进行组织,具有不同级别的权限和职责。高级别Agent负责宏观规划和协调,并将任务**委派(Delegate)**给低级别Agent,有助于管理复杂性,提高效率和可伸缩性。

img

40.Emergent Behavior(涌现行为)

当多个简单Agent遵循相对简单的规则进行交互时,宏观层面观察到的复杂、协调且往往出乎意料的行为。这种行为不是由任何单个Agent或中央控制器明确编程的,而是由Agent之间的局部交互自发产生的,例如蚁群的觅食路径或鸟群的飞行模式

41.Human-in-the-Loop(HITL)(人在回路)

一种AI系统设计模式,其中人类的专业知识被整合到AI的决策或学习过程中,以确保AI的准确性、可靠性和道德性。AI负责处理大量数据和自动化常规任务,但在遇到不确定、复杂、高风险或需要道德判断的边缘情况时,将决策权或审查权交回给人,如自动驾驶中驾驶员的接管。

42.Knowledge Representation(知识表示)

AI系统内部存储和组织信息的方式,使得这些信息能够被机器有效处理和推理。它是AI的基石之一,决定了AI Agent如何理解和操作其世界。常见的Knowledge Representation方法包括逻辑(Logic)、规则(Rules)、语义网络(Semantic Networks)、本体(Ontology)和知识图谱(Knowledge Graph)

43.Ontology(本体)

在AI和信息科学中,Ontology是对特定领域中概念及其之间关系的正式、明确的规范(即词典或词汇表),它为知识共享和重用提供了语义基础。Ontology比Knowledge Graph更侧重于定义概念和关系的类型,提供了一种共识性的理解,使得不同的AI Agent或系统可以共享和理解相同领域的信息。

44.Knowledge Graph(知识图谱)

一种以图形形式表示知识的结构化数据模型,其中实体(节点)通过关系(边)相互连接,帮助AI Agent理解复杂概念之间的语义联系。它提供了一种机器可读的方式来存储和组织大量事实和概念,Agent可以查询Knowledge Graph以获取背景知识、进行推理和回答问题。

img

45.Rule-Based System(基于规则的系统)

一种AI系统,其决策和行为完全基于一组预定义且明确的“如果-那么”(If-Then)规则。这种系统透明、可解释,但在处理复杂、不确定或规则难以穷尽的问题时,其适应性较差。现代AI Agent通常会结合规则和更复杂的学习模型。

46.Ethical AI(道德AI

关注AI系统在设计、开发和部署过程中如何确保公平性、透明度、可解释性、隐私保护、问责制和避免潜在伤害的原则和实践。它旨在防止AI系统产生偏见、歧视、侵犯隐私、滥用权力或对人类社会造成负面影响,包括开发算法公平性(Algorithmic fairness)机制和建立清晰的问责机制(Accountability Mechanisms)。

47.Algorithmic fairness(算法公平性)

确保AI算法在决策过程中不对特定个体或群体产生不公正或歧视性对待。由于训练数据可能存在偏差,或算法本身存在缺陷,AI系统可能会无意中加剧社会不公。Algorithmic fairness研究旨在开发方法来检测、量化和减轻这些偏见,确保AI系统在所有群体面前提供公正、平等的结果。

48.Swarm Intelligence(群体智能)

群体智能灵感来源于自然界中社会性群体(如蚂蚁、蜜蜂、鸟群)行为的一种分布式AI方法,其中简单的个体Agent通过局部交互涌现出解决复杂问题的集体智能。它强调去中心化、自组织和Emergent Behavior,例如蚁群优化算法在路径优化、资源分配等方面表现出色。

img

49.Model Drift(模型漂移)

当AI模型的性能因其所处理的数据分布发生变化(即真实世界发生变化)而逐渐下降的现象。Model Drift是AI系统维护和持续学习中需要解决的关键挑战,通常需要通过模型的重新训练增量学习(Incremental Learning)或自适应学习(Adaptive Learning)来应对。

50.Transfer of Control(控制转移)

在AI Agent和人类协作的系统中,将任务的执行权或决策权从AI Agent移交给人类操作者的过程。它是Human-in-the-Loop系统中的关键机制,当AI系统识别到自身无法处理当前情况或遇到高风险时,会主动将控制权平稳地移交给人类。

51.Fail-Safe Mechanism(故障安全机制)

在AI Agent或系统中,当检测到故障、错误或非预期行为时,能够自动触发并使系统进入安全状态,以防止进一步损害或危险的预防性设计。这是构建**可靠(Reliable)和鲁棒(Robust)**AI系统的关键,其目标是“宁可错杀一千,不可放过一个”,例如工业机器人检测到故障时立即停止所有运动。

52.Human-Agent Collaboration(人机协作)

人类和AI Agent共同工作,相互补充优势,共同完成任务或解决问题。区别于Human-in-the-Loop强调人类对AI的监督或干预,Human-Agent Collaboration更强调人类与AI的平等伙伴关系和协同增效(Synergy),人类提供创造力、直觉,AI则提供数据处理能力、自动化。

53.Agentforce(Default)(Agent力量**/**默认)

在某些特定框架或平台中,它可能指一个用于管理和协调多个AI Agent的默认Agent或模块,扮演着“指挥中心”的角色。它确保了多个Agent之间的有效协作,并优化了整个系统的性能,例如在某些Multi-Agent System框架中负责Agent的注册、通信和任务分配。

54.Singularity(奇点)

一个假想的未来时间点,届时人工智能将变得远超人类智能,导致技术增长失控和难以逆转的社会变革。Singularity是一个争议性但引人深思的概念,通常与**超级智能(Superintelligence)**的出现相关联,引发了对AI潜在风险和机遇的深刻讨论。

55.Agent Framework(Agent框架)

提供一套结构化工具、库和基础设施,用于帮助开发者设计、构建、测试和部署AI Agent的软件平台。Agent Framework简化了AI Agent的开发过程,通过提供预构建的模块(如Memory Modules、Tool Use接口、Planner、Actuator)和规范的API,开发者可以专注于Agent的业务逻辑

**56.**LangChain

一个流行的开源框架,旨在简化使用大语言模型(LLM)构建AI Agent和应用程序的开发。LangChain提供了一套模块化组件和预构建的链(Chains),允许开发者轻松地将LLM与外部数据源(通过检索(Retrieval))、工具(Tools)(通过Function Calling)、记忆模块(Memory Modules)和Agent逻辑结合起来,从而快速构建复杂的LLM应用程序。

img

**57.**AutoGen

由微软开发的一个框架,用于构建和协调多Agent对话,使AI Agent能够自主地进行协作和对话以解决任务。AutoGen的独特之处在于它强调Agent之间的可配置、可对话和自动化的协作,允许开发者定义不同角色的AI Agent(如程序员Agent、产品经理Agent),它们之间可以像人类团队一样进行对话、分配任务,共同完成复杂项目。

**58.**SmolAgents

HuggingFace开发的一个轻量级AI Agent框架,专注于通过简单且高效的代码实现快速原型开发和部署大语言模型驱动的Agent。SmolAgents的“Smol”意指“Small”,强调其轻量级和易用性,旨在降低构建LLM Agent的门槛,让开发者能够用最少的代码行数快速试验和部署Agent功能。

**59.**CrewAI

一个专门用于多Agent编排(Multi-Agent Orchestration)的框架,旨在让AI Agent能够承担明确的角色(Roles)、共享目标(Goals),并作为一个有凝聚力的团队(Cohesive Unit)进行协作。CrewAI专注于Agent之间的团队合作和任务协调,允许Agent被赋予特定的“角色”(如“研究员”、“作家”),并提供机制让它们可以相互通信、分配子任务、审查彼此的工作,最终共同完成一个复杂的团队项目。

img

**60.**Langgraph

一个基于LangChain构建的框架,专注于使用图(Graph)的方式来构建有状态的、多Agent的大语言模型应用。Langgraph通过显式地定义状态和状态之间的转换,允许开发者创建更复杂、更可控的Agent工作流,使得调试和理解复杂Agent的行为变得更容易,并实现更精确的状态管理(State Management)和流程控制(Flow Control)。

从现实世界中灵活穿梭的机器人,到在线上互动中提供便利的聊天机器人,AI Agent 正在悄然改变着各个行业的运作模式和解决问题的思路。这60个AI Agent相关术语揭示了一个重要现象,即智能系统如何自主地做出决策。

随着技术的不断发展,它们的影响力也在持续扩大,这使得道德和透明的操作变得尤为关键。无论是通过“人在回路(Human-in-the-Loop)”的机制来确保方向正确,还是依靠“故障安全(Fail-Safe)”系统来保障稳定运行,AI Agent 的未来都离不开人机之间的紧密协作。

理解这些术语,能帮助我们更好地把握技术发展的方向,确保这些智能系统不仅仅是工具,更是我们进步道路上的可靠伙伴。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值