大量国央企接入 DeepSeek,哪些场景可以由 AI 赋能?

近期,一个引人注目的现象是众多国央企集体接入 DeepSeek,这一举措预示着 AI 在国央企的应用将迈向新的高度。

哪些场景能够借助 AI 实现赋能升级?

第一,能源领域:智能运维与高效生产

在能源行业,众多能源央企纷纷完成 DeepSeek 技术接口的集成部署。以国家电网为例,2 月 12 日,其子公司国网信通产业集团自主研发的模型服务云 MSC 平台全面接入 DeepSeek 大模型。通过二者的深度融合,实现了需求精准解读、交互极致体验、缺陷智能防控、性能优化策略及文档自动生成等关键功能,显著提升了电网数字化项目研发效率,赋能业务快速响应和灵活变革,同时有效降低了研发成本。南方电网也在同日完成了开源大模型 DeepSeek 的本地部署,实现自然语言基础模型的快速升级迭代,参数规模提升至千亿级别,极大地增强了电网在各项业务领域中的智能应用效果。

中国华能的 “睿智小能” AI 助手是 DeepSeek 在能源领域应用的典型案例。该助手深度融入 “iHN+” 平台,实现了知识问答、公文拟稿、智能校对、文件解读、科研辅助等基础功能。在电力生产控制方面,与工业过程温度控制系统相结合,保证温度精准控制与快速响应,并根据历史数据给出控制参数建议。在设备检修指导方面,构建电力设备私有化知识库,与设备管理、缺陷管理等功能集成,实现设备故障智能排查、检修问答与指导。

第二,通信与办公:智能协作与流程优化

在通信领域,AI 可以优化通信网络的规划与运维。通过对网络流量、用户行为等大数据的分析,AI 能够提前预测网络故障,实现智能调度,保障通信网络的稳定高效运行。

在办公场景中,AI 赋能的效果则更为显著。例如,大唐数科完成 DeepSeek-R1 的本地化部署,并结合网络爬虫技术、RAG(检索增强生成)、Agent(智能体)等多种前沿技术,对自主研发的供应商商情分析报告生成助手、AI 平台智能助手和会议纪要自动生成助手进行能力升级。引入 DeepSeek-R1 后,供应商商情分析报告质量显著提升,能全面剖析供应商的经营实力、技术能力和风险管控情况,为集团公司决策提供强有力的支撑。

第三,生产制造:质量管控与供应链协同

对于涉及生产制造的国央企,AI 可以在质量管控环节发挥重要作用。通过深度学习大量的生产数据,AI 能够实时监测生产过程中的各项参数,及时发现产品质量缺陷,甚至提前预测可能出现的质量问题,从而实现从被动检测到主动预防的转变,提高产品质量和生产效率。

在供应链协同方面,AI 可以整合分析供应链各环节的数据,包括原材料采购、生产进度、物流配送等。例如,预测原材料价格波动,合理安排采购计划;优化生产排期,确保按时交付;实时跟踪物流信息,及时调整配送方案等,实现供应链的高效协同,降低运营成本。

但是,AI 在国央企的大规模应用也面临一些挑战。能源行业的 AI 应用需要结合具体领域开发定制化的垂直大模型,对技术团队要求较高。能源系统的实时监控和响应需求,对 AI 算法的计算效率和延迟提出了更高要求。同时,许多能源场景需要边缘计算支持,模型需在计算能力和存储资源有限的条件下具备本地部署能力,面临技术复杂性问题。此外,能源行业事关国家安全和民生保障,对 AI 系统的可靠性和安全性要求极高,如何在数据共享和隐私保护之间找到平衡是一大难题。目前,能源行业 AI 应用还缺乏统一标准和规范,技术推广和应用效果参差不齐,初期投入高、回报周期长,新技术引入验证和评估周期长等问题都有待解决。

尽管面临挑战,但国央企接入 DeepSeek 已为 AI 赋能打开了大门。随着技术的不断发展和应用的深入,AI 将在更多场景为国央企带来创新变革,提升其核心竞争力,助力国央企在新时代实现高质量发展,在全球经济舞台上展现更强大的实力。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值