低显存也能玩?可本地配置的AI生图工具安装指南(非常简单)

这个文章其实写的有点晚了,毕竟2个工具都已经出现了很久。不过鉴于大部分人其实接触AI生图都两眼一黑的,还是写写吧。

在SD webui出现的时候我就已经半推半就的开始装了:为什么说半推半就呢?一个是因为我个人是个很懒的人,当时的webui安装步骤看到开头就开始头大了,全是编程的东西(尽管很简单);另一个是被人催促着要“接触新东西”,自己就有点跃跃欲试。事实证明,安装webui真的要了我命:从安装到可以跑起来,满打满算花了小半个月时间,各种报错各种百度各种从一个什么都不懂的人硬啃的把这东西靠我破破烂烂的能力给装起来了。

好在,不久之后AI生图的生态就好起来了,Comfyui也成功的超越了webui变成大家最爱的工具之一。而被誉为“AI界最快的男人”——张吕敏,敏神,也改造了webui,生成了一个新的项目:Stable Diffusion Forge(以下简称Forge)。

这就是本文我要说的2个工具Comfyui和Forge。

Comfyui安装

不用git,对,全文git含量极低。官方直接就提供了一键安装包!又是github又是python的,不需要!

官方甚至提供了直链下载(我直接翻译了,以防有人看不懂)


这份完整版的comfyui整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述
Comfyui官方回复非N卡的启动方式

其次就是大家关心的问题:没有N卡能不能玩?官方给出了解答,AMD卡可以玩!所以整个流程就是:下载-解压-点“run_cpu”、“run_nvidia_gpu”就行。如果不是N卡那就按上图所示的跑。

Forge安装

敏神同样提供了一键安装包,流程和Comfyui一样,下载解压,但解压后要先运行一下update.bat,等待提示结束后,关闭窗口,再双击run.bat,同样也不需要任何的环境依赖,一键安装包全部搞定。

至于非N卡能不能玩,我不清楚,有兴趣的可以自己试试。

当然那也有一些国内大神出的秋叶包诸如此类的,我个人更喜欢本地安装,感觉使用起来舒服一些。

所需要的模型去哪里下载?

很多新闻都一直说大模型大模型的,也有不少人会有些混乱:到底GPT的大模型,和画图的大模型有什么不同?我的理解是在本质上没有大的区别(可能理解有误),只是GPT的预训练数据以文本为主,而生图的大模型则以文本、图像双结合。所以这就注定了两者使用的大模型是完全不一样的。

最开始推出生图大模型(简称为底模)的则是StabilityAI公司,他们发布了一系列的模型,从1.5开始编号,2.0闭源(目前已经无法在官方渠道下载),目前已经到了3.5。而耳熟能详的Flux出自于德国的黑森林实验室,官方也有网站,huggingface上搜索同样可以下载。

基础大模型:SD1.5、SD2.0(已被闭源)、SDXL、SD3.0、SD3.5。下载地址:https://huggingface.co/stabilityai ——这是官方的地址,当然网上也有很多网盘分享什么的,注意甄别获取,以免被骗。

附加模型:

1、embedding:用来增强词义的效果,分正面和负面,效果等同于常见的Lora。

2、Lora:简单理解就是针对大模型的轻量微调的“小”模型,比较常用,AIGC的一个分支——所谓“炼丹”,就是指训练Lora,分为风格、人/物。这个下载地址就非常多了,内外网都有,国内这块比较出色的平台是哩布哩布。

3、vae:通常用来做大模型的补充集,简单理解就是能让画面的色彩明暗更丰富一些。

要注意的是,以上的3类“小”模型,都是针对大模型训练的,也就是说,它们是互相配套的,因此,如果使用SDXL,那么下载的embedding、Lora、vae,都需要关注后缀的问题,搭配错了使用,不会生成很好的效果(当然如果某些Lora训练集非常好,泛用性很强,是可以交叉使用的)。

注意配套的后缀

以Forge为例(因为它的界面更适合小白),目前更新到的版本已经贴心分好类了:sd=低于XL的版本(1.5、3等等);xl是SDXL专用的,flux也是专用的,点击之后底下的参数基本上都已经给默认设置了,不需要小白再操心怎么设置的问题。

挂载Lora的话,Forge是需要在末尾增加lora:名称:强度的,Comfyui是使用单独面板控制。

挂载Lora的Forge

挂载Lora的Comfyui工作流,可见单独设置的面板

(上:Forge,下:Comfyui)

以上面的2个图为例,简单讲一些参数的不同。

Forge的采样迭代步数=Comfyui的步数,提示词相关性=CFG,采样器两者命名一致,Comfyui独有的运行后操作提供了固定、增加、减少、随机4个选项,以我了解这四个选项的意思分别是在随机种输出后固定、增加1位、减少1位和随机增加1位的意思。通常Comfyui的图片尺寸可以搭配不同的节点进行,上图的空latent的可以设置宽高尺寸,而Forge通过进度条拉取实现,但Forge只提供到2048*2048的尺寸,Comfyui可以设置更大(取决于你的电脑GPU能不能跑得动)。Comfyui的Clip文本编码器对应Forge的正、负面提示词,但Clip文本编码器又由于第三方插件的原因,有些集成了正负面提示词,内置的是不做区分的(如上图)。

现在,你已经了解了基础的知识,只需要将文本贴进去,然后点击就能生图了。

如果说想将固定的图改变风格、参考人物姿势,那就需要用到ControlNet(简称CN)。

CN初始面板

这个非常了不起的插件,也是敏神做的(我没记错的话)。它支持的样式如上图,但通常用的比较多的就是canny、lineart、openpose、softedge几个功能。除了openpose以外,其他的几个可以广泛用于各种提取线稿的场景。下图就是我用一个非常简单的工作流提取到的线稿,基本上每张图的细节都能翻转成线稿了。

openpose通常用于人的姿势识别,可以利用姿势来生成不同风格的图。

以Forge为例,使用1.5的底模

(上:输出的结果;下:捕捉的人体骨骼姿势和面部表情)

可以看到,尽管是SD1.5的模型,但是手还是没有画崩的(可能是因为姿势没有很暴露手指)。而我只是输入了非常简单的提示词:1 man sitting.

CN的模型也是需要单独下的,遵循的规则和生图的底模一样,名称是配套的,如上图,我的openpose是sd1.5的,那么搭配的底模也必须是sd1.5,且后缀是openpose。以上文的名称拆解:CN模型–底模+适用场景,所以sd1.5_openpose表示这是一个使用sd1.5底模、且用于openpose控制的CN模型。

至此,你已经完全掌握了进阶的用法。至于高清放大之类的,也遵循必须下载单独模型的原则,它适用的场景主要是想要生成超过工具极限的大图或者显存实在撑不住,就使用先生成小图,再使用高清放大将图片高清化。

当然Forge还有很好的功能:layerdiffuse可以用于生成透明底的图片,我曾经用来做图标、内置SVD,只需要下载SVD大模型就可以本地跑视频且比较丝滑。(但新版本都已经移除,可以下载旧版本使用)。

怎么升级?只需要在根目录调出cmd然后输入git pull,就能升级。当然之前我也到官方页面询问了各位大神怎么升级,最后也得到了答案,不懂的可以尝试去官方页面问一问。

最后,祝大家玩得快乐!近期摸索在老一点的Mac上跑本地生图工具。

这份完整版的comfyui整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>嗯,用户问的是DeepSeek本地部署的最配置。首先,我需要明确DeepSeek是什么。可能是指深度求索公司的某个AI模型,比如他们的自然语言处理模型。类似ChatGPT的那种大语言模型? 那本地部署的话,通常需要考虑硬件配置,比如CPU、内存、GPU这些。用户可能想知道在本地运行这样的模型需要什么最的硬件要求,或者可能包括软件依赖。 首先,得确定具体是哪个模型。比如,如果是大模型,可能需要较高的GPU显存。比如,7B参数的模型可能需要至少8GB显存,13B的可能需要更高。但如果是量化版的,比如4-bit,可能可以降显存需求。 然后,CPU方面,可能需要多核的,比如Intel i5或更高,或者AMD的Ryzen系列。内存方面,大模型可能需要至少16GB,甚至32GB,尤其是如果没有GPU的话,内存需求会更大。 存储空间也不能忽视,模型文件可能从几GB到几十GB不等,比如7B的模型大约13-14GB,所以至少需要足够的SSD空间。 软件方面,可能需要Python环境,深度学习框架如PyTorch,CUDA支持如果使用NVIDIA GPU。操作系统的话,Linux可能更常见,但Windows也可能支持。 不过,用户问的是最配置,所以可能需要给出不同情况下的最要求,比如有没有GPU的情况。比如,如果使用CPU推理,可能需要更大的内存和更快的CPU,但速度会慢很多。 另外,可能要考虑推理框架,比如llama.cpp或者DeepSpeed,这些可以优化资源使用。比如,llama.cpp可以在没有GPU的情况下运行,但需要足够的内存。 还要注意,不同的模型版本可能有不同的需求,比如是否量化。所以可能需要建议用户查看官方文档,或者给出一般性的指导。 可能需要分情况讨论:有GPU的情况和纯CPU的情况。比如,使用GPU的话,最需要什么样的显卡,显存多少。纯CPU的话,需要多少内存和什么样的处理器。 另外,可能的误区是用户可能以为本地部署只需要满足最配置就能流畅运行,但实际上可能需要更高的配置才能有可用的速度。所以需要提醒用户,最配置可能只能运行,但实际体验可能不佳。 总结一下,可能需要包括以下几个方面: 1. 模型参数规模(如7B、13B等)对应的配置。 2. GPU:型号、显存要求。 3. CPU:核心数、频率。 4. 内存:容量。 5. 存储:硬盘空间。 6. 软件依赖:操作系统、框架、驱动等。 7. 量化版本的影响。 8. 推理速度的预期。 需要确认是否有官方文档参考,但假设没有的话,只能根据常见的同类模型配置来推断。同时要提醒用户实际需求可能因应用场景和模型版本而异,建议参考官方文档。Deep</think>Seek(深度求索)的本地部署最配置需求会根据具体模型规模和应用场景有所不同,以下是一般性建议(以常见的7B/13B参数模型为例): --- ### **一、硬件配置** #### **1. GPU方案(推荐)** - 7B模型(FP16):约14GB显存(若使用4-bit量化可降至6-8GB) - 13B模型(FP16):约26GB显存(4-bit量化约10-12GB) - **CPU**: - 四核以上(如Intel i5或AMD Ryzen 5,支持AVX指令集) - **内存**: - 至少16GB(建议32GB,若纯CPU推理需更高内存) - **存储**: - SSD硬盘,至少50GB可用空间(模型文件+系统依赖) #### **2. 纯CPU方案(速度较慢)** - **CPU**: - 支持AVX2指令集的多核处理器(如Intel i7或AMD Ryzen 7) - 建议8核以上,主频≥3.0GHz - **内存**: - 32GB及以上(7B模型需约20GB内存,13B需40GB+) - **存储**:同GPU方案。 --- ### **二、软件依赖** - **操作系统**: - Linux(Ubuntu 20.04+)或 Windows 10/11(WSL2兼容性更佳) - **框架与工具**: - CUDA 11.7+(GPU必需) + cuDNN - Python 3.8+、PyTorch 2.0+、Transformers库 - 可选优化工具:llama.cpp、vLLM、DeepSpeed等 - **驱动**: - NVIDIA驱动≥515.0(GPU必需) --- ### **三、配置优化建议** 1. **模型量化**: - 使用4/8-bit量化技术(如GGUF格式)可大幅降显存和内存占用,但可能轻微影响精度。 2. **推理框架**: - 推荐llama.cpp(CPU优化)或TensorRT-LLM(GPU加速),提升推理速度。 3. **多GPU支持**: - 若需部署更大模型(如33B+),需多卡并行(如2×RTX 4090)。 --- ### **四、注意事项** - **速度与性能**: - 最配置仅支持基础推理,批量处理或复杂任务需更高配置。 - 纯CPU推理延迟较高(如7B模型成100词需数分钟)。 - **官方文档**: - 建议以DeepSeek官方发布的最新部署指南为准(不同模型版本可能有差异)。 如需部署具体模型,请提供更多细节以便进一步优化建议!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值