#816 Div2E. Long Way Home 斜率优化dp

E. Long Way Home
斜率优化dp,dijkstra

题意

给定一个 n n n 个点, m m m 条边的带权无向图,边形如 < u , v , w > <u, v, w> <u,v,w> ,起点为 1 1 1 。可以乘坐至多 k k k 次飞机,从 u u u v v v ,距离为 ( u − v ) 2 (u - v) ^ 2 (uv)2 。求到每个点的最短距离。 ( n , m ≤ 1 e 5 , k ≤ 20 ) (n, m\leq 1e5, k\leq 20) (n,m1e5,k20)

思路

k = 0 k = 0 k=0 时,dijkstra即可求出最短路,考虑 k = 1 k=1 k=1 时如何求。
一个显而易见的做法是在 k = 0 k=0 k=0 的基础上,枚举哪两个点之间坐了飞机。

for(int i = 1; i <= n; i++) {
	for(int j = 1; j <= n; j++) {
		dis[i] = min(dis[i], old_dis[j] + (u - v)*(u - v));
	}
}	

当然,不一定是最后一步才坐飞机,所以更新 d i s dis dis 后仍需要跑一遍dijkstra,可以得到答案。
于是我们得到了 O ( k n 2 ) O(kn^2) O(kn2) 的做法。
由于 k k k 范围很小,给了我们提示:从 0 , 1 , 2 , . . . k − 1 0,1,2,...k-1 0,1,2,...k1 一直枚举到 k k k ,所以考虑如何优化上述转移。
将上述转移写为数学表达式
d i s [ v ] = m i n u ∈ [ 1 , n ] ( o l d _ d i s [ u ] + ( u − v ) 2 ) = o l d _ d i s [ u ] + u 2 + v 2 − 2 × u × v dis[v] = min_{u\in[1, n]} (old\_dis[u] + (u - v) ^ 2)=old\_dis[u] + u^2 + v^2 -2\times u\times v dis[v]=minu[1,n](old_dis[u]+(uv)2)=old_dis[u]+u2+v22×u×v
上式中,因为有 u × v u\times v u×v 的项,考虑斜率优化。
k = − 2 u , b = o l d _ d i s [ u ] + u 2 , f ( v ) = k v + b k=-2u, b=old\_dis[u]+u^2,f(v)=kv+b k=2u,b=old_dis[u]+u2,f(v)=kv+b ,则原式转化为 d i s [ v ] = f ( v ) + v 2 dis[v]=f(v) + v^2 dis[v]=f(v)+v2
其中 f ( v ) f(v) f(v) 即为所维护的斜率,因为我们需要让 f ( v ) f(v) f(v) 尽可能小,所以我们维护一个下凸包。
时间复杂度 O ( k ( m l o g n + n l o g n ) ) O(k(mlogn + nlogn)) O(k(mlogn+nlogn))
也可以优化到 O ( k ( m l o g n + n ) ) O(k(mlogn + n)) O(k(mlogn+n)) ,由于询问1-n满足单调性,所以不需要二分。

代码

struct line {
    int k, b;
    line() {}
    line(int k, int b) : k(k), b(b) {}
 
    double intersect(line l) {
        //交点
        double db = l.b - b;
        double dk = k - l.k;
        return db / dk;
    }
 
    int operator () (int x) {
        return k * x + b;
    }
    bool operator < (const line x) const {
        return k > x.k;
    }
};
 
struct CHT {
    vector<double> x;
    vector<line> lines;
 
    void init(line l) {
        x.push_back(-INF);
        lines.push_back(l);
    }
 
    void addLine(line l) {
        while (lines.size() >= 2 && l.intersect(lines[lines.size() - 2]) <= x.back()) {
            x.pop_back();
            lines.pop_back();
        }
        x.push_back(l.intersect(lines.back()));
        lines.push_back(l);
    }
 
    int query(int qx) {
        int id = upper_bound(x.begin(), x.end(), qx) - x.begin();
        --id;
        return lines[id](qx);
    }
};
struct node {
    int dis, pos;
    bool operator <(const node &x)const {
        return x.dis < dis;
    }
};
const int MAXN = 1e5 + 5;
struct edge {int v, w;};
vector<edge>g[MAXN];
int dis[MAXN];
bool vis[MAXN];
int n, m, k;
void Dij() {
    for (int i = 1; i <= n; i++)vis[i] = 0;
    priority_queue<node>que;
    for (int i = 1; i <= n; i++)que.push({ dis[i],i });
    while (que.size()) {
        auto x = que.top(); que.pop();
        int u = x.pos, distance = x.dis;
        if (vis[u])continue;
        vis[u] = 1;
        for (edge ed : g[u]) {
            int v = ed.v, w = ed.w;
            if (dis[v] > distance + w) {
                dis[v] = distance + w;
                if (!vis[v])que.push({ dis[v],v });
            }
        }
    }
}
void solve() {
    cin >> n >> m >> k;
    for(int i = 1; i <= m; i++) {
        int u, v, w;
        cin >> u >> v >> w;
        g[u].pb({v, w});
        g[v].pb({u, w});
    }
    for(int i = 1; i <= n; i++) {
        dis[i] = INF;
    }
    dis[1] = 0;
    Dij();
    while(k--) {
        CHT cht;
        cht.init({0, 0});
        vector<line> lines;
        for(int u = 1; u <= n; u++)
            lines.pb({- 2 * u, dis[u] + u * u});
        sort(lines.begin(), lines.end());
        for(auto l : lines)
            cht.addLine(l);
        for(int v = 1; v <= n; v++)
            dis[v] = cht.query(v) + v * v;
        Dij();
    }
    for(int i = 1; i <= n; i++) {
        cout << dis[i] << ' ';
    }
    cout << endl;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值