Spark的设计与运行原理

1.概述

Spark是一个开源的大数据处理框架,它最初由加州大学伯克利分校的AMPLab开发,目前由Apache软件基金会进行维护。Spark提供了强大的数据处理功能,支持多种数据源,包括HDFS、Cassandra、HBase、Redis等,同时也提供了灵活的数据处理方式,包括批处理、流处理和机器学习等。

1.1 Spark的特点包括:

  1. 基于内存计算:Spark采用内存计算的方式,可以极大地提高数据处理的速度和效率。Spark支持将数据存储在内存中,可在迭代计算中大幅减少I/O开销。

  2. 支持多种数据处理方式:Spark不仅支持批处理,而且还支持流处理、机器学习、图计算等多种计算方式,可以根据需求选择最合适的处理方式。

  3. 部署灵活:Spark可以以多种方式部署,例如可以在Hadoop集群上运行,也可以在自己的独立集群上运行,可以灵活满足不同的需求。

  4. 易于使用:Spark提供了多种开发语言和API,如Scala、Java、Python和R等,让开发人员可以使用自己最熟悉的语言和API进行开发,同时提供了易于使用的交互式控制台和调试工具。

  5. 支持多种数据源:Spark可以方便地处理多种数据源,如Hadoop HDFS、HBase、Cassandra、JDBC等,从而支持处理企业级数据处理任务。

  6. 丰富的生态系统:Spark拥有丰富的生态系统,包括Spark Streaming、Spark SQL、MLlib等组件,可以方便地进行流处理、SQL查询和机器学习等任务。

  7. 高度可靠性:Spark提供了高度可靠性的机制,包括数据冗余、数据恢复和任务失败恢复等,确保系统在面对各种故障时仍能保持稳定运行。

1.2 三大分布式计算系统

Hadoop、Spark和Storm是目前Apache基金会的三大分布式计算系统,是处理大数据的重要工具。

  1. Hadoop:Hadoop最初是由Apache基金会开发的一个分布式系统框架,可以处理高容量数据集并部署在廉价的硬件上。它主要包括HDFS(Hadoop分布式文件系统)和MapReduce两个核心部分。HDFS是一种分布式文件系统,可以将数据存储在多个机器上,而MapReduce则是一种分布式运算模型,用于处理大规模数据集。Hadoop生态系统还包括Pig、Hive、HBase、Oozie等组件,可以用于实现数据处理、分析和管理等任务。

  2. Spark:Spark是基于内存计算的分布式计算系统,最初由加州大学伯克利分校的AMPLab开发。它提供了强大的数据处理能力,支持多种数据源和数据处理方式,如批处理、流处理和机器学习等。Spark的核心是RDD(Resilient Distributed Dataset)数据结构,可以在分布式集群中高效地处理数据。Spark生态系统中还包括Spark SQL、Spark Streaming和MLlib等组件,可以满足各种不同的应用需求。

  3. Storm:Storm是一种分布式实时计算系统,最初由Twitter开发。它可以在分布式集群上处理实时数据,并支持可靠性保证、连续性等特性,广泛应用于实时数据处理、流计算、实时应用等领域。Storm生态系统中还包括Trident、StormCrawler等组件,可以满足不同场景的需求。

1.3 Spark和Hadoop的比较:

Spark和Hadoop都是大数据处理的工具,但在一些方面有所不同。下面是Spark和Hadoop的比较:

  1. 处理速度:Spark采用基于内存的计算方式,可以大幅提高处理速度,适合做数据挖掘、机器学习等迭代计算任务。Hadoop采用基于磁盘的计算方式,速度相对较慢,适合做批量离线计算任务。

  2. 数据处理方式:Spark支持多种数据处理方式,如批处理、交互式查询、流处理和机器学习等,可以满足不同场景的需求。而Hadoop主要支持批处理,不支持实时处理。

  3. 数据存储:Spark可以直接读取多种数据源,如Hadoop HDFS、HBase、Cassandra、JDBC等,支持跨数据源的数据处理。而Hadoop主要使用HDFS作为数据存储,不支持直接读取其他数据源。

  4. 生态系统:Spark拥有丰富的生态系统和API,配套的Spark SQL、Spark Streaming和MLlib等框架可以更好地处理数据,提供更多的数据处理路径,而Hadoop生态系统也很强大,如HBase、Hive等组件提供了类SQL查询、列式存储和复杂查询等功能。

  5. 部署方式:Spark可以与Hadoop集成,但Spark也可以独立集群上运行。而Hadoop只能在Hadoop集群上运行。

综上所述,Spark适合做迭代计算和实时处理,Hadoop适合做批量离线计算和存储,具体使用根据实际场景和需求做出选择。

2.Spark生态系统

2.1 大数据处理的三个类型

大数据处理的三个类型包括:

  1. 批处理:批处理是指将数据分批处理,一批数据处理完成后,才进行下一批数据的处理。批处理适合处理数据量大、复杂度低的任务,如数据清洗、数据转换等,可以通过Hadoop MapReduce等技术实现。时间跨度通常是小时级别的,即每隔一段时间处理一批数据。

  2. 流处理:流处理是指对无限数据流进行实时处理,可以动态地处理数据,并及时反应处理结果,适合场景包括实时监控、实时统计等。流处理可以使用Spark Streaming、Flink等技术实现。时间跨度通常是秒级别的,即实时处理数据,并及时反应处理结果。

  3. 交互式处理:交互式处理是指能够快速地对数据进行交互式的查询和探索,适合场景包括数据探索和数据分析等。交互式处理可以使用Spark SQL、Presto等技术实现。时间跨度通常是毫秒级别的,即能够快速地对数据进行交互式的查询和探索。

2.2 Spark生态系统

Spark生态系统是指一系列与Spark紧密结合的各种工具、框架以及第三方库,它们共同构成了一个大规模、高效、灵活的数据处理体系,旨在为企业提供最佳的大数据处理解决方案。Spark生态系统的核心是Spark Core,而其它各种组件和工具则提供了丰富的功能和应用场景,例如:

  1. Spark Core:Spark的核心组件,提供分布式计算框架,支持内存计算和容错机制,可以处理大规模数据,并具有高速度和灵活性,成为支持Spark生态系统的核心。

  2. Spark SQL:Spark的结构化数据处理组件,提供了SQL查询和数据分析的能力,支持高级功能如窗口函数、用户定义的函数和融合操作等,同时它还支持多种数据格式,如Parquet、CSV等。

  3. Spark Streaming:Spark的实时数据处理组件,支持实时数据处理和流式计算功能,可以通过批处理机制对离线计算和流式计算进行统一处理,可以处理高吞吐量数据,支持Windowed和Checkpoint机制。

  4. MLlib:Spark的机器学习库,提供多种机器学习算法的实现和预测分析功能,包括分类、聚类、回归、降维等,同时也支持更高级的特征提取和转换处理,如TF-IDF。

  5. GraphX:Spark的图处理库,提供图处理和分析的函数和算法,支持多种图结构数据处理的方法,例如PageRank、Triangle Counting等,同时支持基于属性图的计算和加速。

  6. SparkR:Spark的R语言接口,使R语言用户能够使用Spark的分布式计算能力。旨在让R语言中的数据科学家和Spark生态系统之间实现无缝衔接。

  7. PySpark:Spark的Python语言接口,可以使Python程序在Spark上运行,包括调用Spark API、使用MLlib以及对Spark SQL的支持等等。Spark使用Py4J在Java虚拟机中启动Python解释器,将Python解释器集成到Java进程中。

总之,Spark的生态系统提供了广泛的功能和工具,让用户可以选择最适合自身需求的组件和工具进行开发和数据处理。同时,Spark的生态系统也在不断更新和发展,持续地拓展着其应用场景和功能。

3.Spark运行框架

3.1 基本概念

Spark是一个快速、通用、可扩展的开源大数据处理框架。Spark提供了一种统一的计算引擎,可以支持分布式、内存处理和基于硬盘的处理方式。下面是一些Spark运行框架的基本概念:

  • RDD:弹性分布式数据集,Spark的核心抽象,代表一个只读的、分区的、弹性的数据集合。RDD抽象了数据集和计算操作,Spark每次计算会自动重新计算出目前要求的所有数据的RDD集合,构成RDD操作链。

  • DAG:有向无环图,即表示RDD之间的依赖关系。RDD操作产生一个新的RDD,新的RDD因为对于原来的的RDD有依赖,所以形成一个DAG。

  • Executor:Spark集群中的工作进程,它们从Driver program接受任务,执行具体的数据处理和计算任务。

  • Application:一个运行在Spark引擎上的程序。通常由 driver program 和若干个运行在集群里的 executor 组成。

  • Driver program:Spark应用程序的执行入口,它负责定义整个应用程序的执行流程和控制逻辑。

  • Partition:Datasets会被拆分成许多小的数据块,称为Partition。

  • Cluster manager:管理Spark应用程序的运行,分配资源、调度任务等。常用的cluster manager有Standalone、YARN、等。

    Task:任务是属于Executor的,在Driver程序中,它通过发射各种作业给Executor以执行。任务通常处理一个5 Partition中的数据块,并通过执行基本的RDD操作完成这个指定任务。

  • Application Master:YARN 中的组件,用来协调运行在 YARN 上的 Spark 作业。

  • Executor Memory:executor进程需要用于存储RDD数据及其生成的中间结果的内存大小。

3.2 架构设计

Spark 在运行时采用了 master-worker 架构,其主要包括以下组件:

  1. Driver:负责启动 Spark 应用程序的进程,即应用程序的主程序。它包含了用户程序的 main 方法,并且定义了 RDD 的转换和动作。

  2. Cluster Manager:负责管理 Spark 集群中的计算资源,如 Standalone、Apache Mesos、Hadoop YARN 等。它向 Driver 提供 Executor,Driver 通过 Executor 在集群中分配和执行任务(Task)。

  3. Executor:在集群中分配和执行任务(Task)的工作进程,每个 Executor 会启动一个 JVM 进程,一个节点可以拥有多个 Executor。

  4. Task:Executor 上具体执行的任务单元,根据用户程序中定义的 transformation 和 action 操作,执行对应的计算任务。

  5. RDD:即弹性分布式数据集,是 Spark 进行分布式计算的基本数据结构。

  6. DAG Scheduler:用于构建 RDD 之间的依赖关系,以及将任务分配到不同的 Executor 上执行。

  7. Task Scheduler:将分配给 Driver 的任务分配到各个 Executor 上执行。

  8. Block Manager:用于管理 Executor 上的内存和磁盘存储,以及在 Executor 之间共享数据。

Spark 运行架构的基本流程如下:

首先,Driver 构建 RDD 的 DAG 有向无环图表示计算过程,然后将 DAG 划分为多个 Stage,每个 Stage 的任务(Task)都只需要处理自己所属的 Partition。最后,将 Stage 向名为 TaskScheduler 的调度器提交,TaskScheduler 将 Task 分配到 Executor 上执行,Executor 执行任务并将结果写回 Block Manager 存储结果。

Spark 运行架构的主要优点是其可扩展性和高性能,同时灵活的资源调度和动态分配使集群资源得到更好的利用。

Spark中各种概念之间的相互关系

  • 一个Application由一个Driver和若干个Job构成,一个Job由多个Stage构成,一个Stage由多个没有Shuffle关系的Task组成

  • 当执行一个Application时,Driver会向集群管理器申请资源,启动Executor,并向Executor发送应用程序代码和文件,然后在Executor上执行Task,运行结束后,执行结果会返回给Driver,或者写到HDFS或者其他数据库中

3.3 Spark运行基本流程

Spark运行基本流程图

  1. 首先为应用构建起基本的运行环境,即由Driver创建一个SparkContext,进行资源的申请、任务的分配和监控

  2. 资源管理器为Executor分配资源,并启动Executor进程

  3. SparkContext根据RDD的依赖关系构建DAG图,DAG图提交给DAGScheduler解析成Stage,然后把一个个TaskSet提交给底层调度器TaskScheduler处理;Executor向SparkContext申请Task,Task Scheduler将Task发放给Executor运行,并提供应用程序代码

  4. Task在Executor上运行,把执行结果反馈给TaskScheduler,然后反馈给DAGScheduler,运行完毕后写入数据并释放所有资源

Spark运行架构具有以下特点:

  • 每个Application都有自己专属的Executor进程,并且该进程在Application运行期间一直驻留。Executor进程以多线程的方式运行Task

  • Spark运行过程与资源管理器无关,只要能够获取Executor进程并保持通信即可

  • Task采用了数据本地性和推测执行等优化机制

3.4 RDD的设计与运行原理

RDD(Resilient Distributed Dataset)是 Spark 中最重要的抽象概念之一,是 Spark 分布式计算的核心数据结构,用于在集群之间高效地传输数据和并行处理数据。RDD 可以看作是一种不可变、可分区、可重复计算的数据集合。

1.RDD设计背景

RDD 的设计背景和 Spark 的发展历程有着紧密的联系。最初 Spark 的设计团队发现,在处理大规模数据时,无法有效利用单机的计算能力,而需要通过分布式计算来解决这一问题。然而,传统的 MapReduce 模型存在过多的 I/O 开销,导致计算效率较低,因此 Spark 团队开始着手设计一种更加高效的计算模型,从而诞生了 RDD。

RDD 的设计旨在解决 MapReduce 模型的计算效率问题,它通过将多次的磁盘操作优化为内存操作,从而大幅提高计算效率。此外,RDD 还具有容错性、可缓存性、分区性等特点,使其成为适用于大规模数据处理的理想计算模型。

RDD 的设计思想受到了许多计算模型和系统的启发,如 MapReduce、DryadLINQ、Resilient Distributed Datasets 等。它分别吸收了这些模型的优点,形成了一种更加高效、易于使用的计算模型。

2.RDD概念

RDD(Resilient Distributed Dataset)是 Spark 中最重要的抽象概念之一,代表了一个在多节点集群上可分区、可缓存、可容错的不可变的分布式数据集合。以下是 RDD 的几个重要概念:

  1. 分布式:RDD 数据被分割成多个块,并分布到集群中各个节点上。

  2. 可缓存:RDD 数据可以被缓存到内存中,在多次计算中重复使用,提高计算效率。

  3. 不可变:一旦 RDD 创建完成,它不能被修改。任何修改操作都会创建新的 RDD。

  4. 可分区:RDD 数据被分割成多个分区,分区内的数据可以并行计算。

  5. 可重复计算:RDD 中的数据可以在失败后重新计算出来。

  6. 行动(Action):行动是由 RDD 生成输出的操作,例如 count、collect、reduce 等。

  7. 转换(Transformation):转换是一种生成新 RDD 的操作,例如 map、filter、reduceByKey 等。

RDD 有很多优势,它支持多种数据源,可以存储在内存中,具有容错能力和并行计算能力等,并且可以在多种不同的编程语言中使用。RDD 是 Spark 框架中的核心抽象,可以说是支撑 Spark 处理大规模数据应用的基石。

RDD 的执行过程可以分为两个阶段:转换(Transformation)和行动(Action)。

  1. 转换阶段

在转换阶段中,RDD 接收到一个或多个初始 RDD,然后通过多个转换操作将它们转换为一个新的 RDD。每个转换操作都会返回一个新的 RDD,而不会改变原有的 RDD。这就是所谓的不可变性。

在转换阶段,Spark 维护一个执行计划(Execution Plan)来确定 RDD 的转换方式以及转换的顺序。

  1. 行动阶段

在行动阶段,Spark 执行最终的 RDD 转换操作,并将结果返回到应用程序中。这些操作都是一些行动(Action)操作,例如:count、collect、reduce 等。在执行某个行动操作时,Spark 将从执行计划中构建执行图,并将数据从集群中带回来。当行动操作完成后,结果会被返回到应用程序中。

整个执行过程从调用第一个 RDD 到最终输出结果的过程称为 Spark 作业(Job)。一个作业可以包含多个转换操作和行动操作,并由 Spark 自动将它们组合在一起以最大化性能。因为 Spark 是基于 RDD 的模型来执行计算的,所以它可以在内存中缓存大量的数据,并且能够通过分区和并行计算来提高计算效率。

3.RDD特性

RDD(Resilient Distributed Dataset)具有以下特性:

  1. 不可变性(Immutability):RDD 一旦创建,它的数据就不可修改了。这种不可变性使得 Spark 可以在分布式计算的环境中保证数据的一致性。

  2. 分布式存储(Distributed Storage):RDD 将数据分布在多个节点上进行存储,从而实现了跨节点的计算。这种分布式存储还可以在执行过程中避免数据的复制和移动,从而减少了网络传输开销。

  3. 分区(Partitioning):RDD 将数据分成一系列的分区,每个分区可以存储在不同的节点上,从而实现并行计算。这种分区也可以支持对数据进行本地化处理,提高了计算的效率。

  4. 弹性容错(Resilience):RDD 可以通过重新计算来应对节点故障或数据丢失,从而实现弹性容错。RDD 还可以通过 checkpointing 来实现数据备份。

  5. 内存缓存(Memory Caching):RDD 可以在计算过程中将数据缓存到内存中,实现快速访问和重用。这种内存缓存还可以避免在每次计算过程中都访问磁盘,进一步提高了计算的效率。

  6. 存储级别(Storage Level):RDD 可以根据需要选择不同的存储级别,包括 MEMORY_ONLY、MEMORY_ONLY_SER、MEMORY_AND_DISK 等多种存储级别。这些存储级别可以支持多种内存和磁盘缓存策略,从而实现不同的计算需求。

以上就是 RDD 的主要特性,它们使得 Spark 可以高效地处理大规模数据,实现了分布式计算的高性能和可靠性。

4.RDD之间的依赖关系

在 Spark 中,RDD 之间有两种依赖关系:窄依赖和宽依赖。这两种依赖关系分别表示了 RDD 之间的依赖关系的不同类型和处理方式。

  1. 窄依赖

窄依赖(Narrow Dependency)是指一个父 RDD 的每个分区对应着最多一个子 RDD 分区的依赖关系。窄依赖可以理解为每个子 RDD 分区只依赖于一个父 RDD 分区,因此可以通过直接从父 RDD 分区中获取所需数据来实现计算。

例如,map、filter、union 等操作都属于窄依赖。下面是一个窄依赖图示例,其中 A 表示父 RDD,B、C、D 表示子 RDD:

      A
    / | \
   /  |  \
  B   C   D
  1. 宽依赖

宽依赖(Wide Dependency)是指一个父 RDD 的每个分区可能对应着多个子 RDD 分区的依赖关系。宽依赖需要通过数据的 shuffle 操作来完成计算,因为子 RDD 依赖的数据可能来自于不同的父 RDD 分区。

例如,groupByKey、reduceByKey、join 等操作都属于宽依赖。下面是一个宽依赖图示例,其中 A 表示父 RDD,B、C、D 表示子 RDD:

     A
   /   \
  B     C
   \   /
    D

宽依赖通常会导致数据的网络传输和磁盘 I/O,因此在处理大规模数据时需要特别注意宽依赖的性能问题。

区分 RDD 的依赖关系是根据父 RDD 和子 RDD 之间的依赖关系的不同类型和处理方式来进行的。

窄依赖表示一个父 RDD 的每个分区最多只能对应一个子 RDD 分区的依赖关系,在计算过程中子 RDD 分区可以直接从父 RDD 分区中获取所需数据。窄依赖的操作主要包括 map、filter、union 等。

宽依赖表示一个父 RDD 的每个分区可能对应多个子 RDD 分区的依赖关系,在计算过程中子 RDD 分区的数据可能来自不同的父 RDD 分区,需要通过数据的 shuffle 操作来完成计算。宽依赖的操作主要包括 reduceByKey、groupByKey、join 等。

根据这两种不同的依赖关系类型,Spark 可以对不同的操作采取不同的优化策略,以提高计算效率和性能。窄依赖操作的优势在于数据的处理是本地化的,可以减少网络传输的开销,适合在数据规模较小的场景下使用;宽依赖操作的优势在于可以实现分布式计算和数据共享,支持大规模数据处理,但是宽依赖需要通过 shuffle 来实现数据的聚合和排序,因此可能会有较高的计算成本和网络开销。

区分 RDD 的依赖关系是根据父 RDD 和子 RDD 之间的依赖关系的不同类型和处理方式来进行的。

窄依赖表示一个父 RDD 的每个分区最多只能对应一个子 RDD 分区的依赖关系,在计算过程中子 RDD 分区可以直接从父 RDD 分区中获取所需数据。窄依赖的操作主要包括 map、filter、union 等。

宽依赖表示一个父 RDD 的每个分区可能对应多个子 RDD 分区的依赖关系,在计算过程中子 RDD 分区的数据可能来自不同的父 RDD 分区,需要通过数据的 shuffle 操作来完成计算。宽依赖的操作主要包括 reduceByKey、groupByKey、join 等。

根据这两种不同的依赖关系类型,Spark 可以对不同的操作采取不同的优化策略,以提高计算效率和性能。窄依赖操作的优势在于数据的处理是本地化的,可以减少网络传输的开销,适合在数据规模较小的场景下使用;宽依赖操作的优势在于可以实现分布式计算和数据共享,支持大规模数据处理,但是宽依赖需要通过 shuffle 来实现数据的聚合和排序,因此可能会有较高的计算成本和网络开销。

Shuffle操作

Shuffle 是 Spark 中的一个非常重要的操作,它通常在宽依赖操作中使用,如 groupByKey、reduceByKey、join 等。Shuffle 操作主要包括数据的分区、移动和排序等,可以分为以下三个步骤:

  1. 数据的分区

在 Shuffle 操作中,首先需要将数据按照一定的规则进行分区,使得相同的数据可以被分配到相同的节点上。数据的分区通常根据键值对中的键来进行分配,使得相同的键值对被分配到同一个分区中。分区的数量由 Spark 运行环境中的参数决定,也可以手动指定。

  1. 数据的移动

在分区完成后,数据需要根据分区的规则从原来的节点移动到目标节点。移动的过程需要通过网络来进行,会涉及到通信成本和网络带宽的消耗。

  1. 数据的排序

在数据移动完成后,需要对移动到目标节点上的数据进行排序,使得相同键的值可以被顺序处理。排序的过程可以借助 MapReduce 算法的思想,对数据进行归并排序。

Shuffle 操作是 Spark 中的一个比较重要的操作,但是它也是一个计算和网络开销较大的操作。因此,在使用宽依赖操作时需要考Shuffle 操作的成本,尽量减少数据移动的次数和数据规模的大小,以提高计算效率和性能。

5.阶段的划分

Spark 中的 RDD 是一个不可变的分布式数据集合,它可以被划分为多个阶段,每个阶段都包含了一组计算任务(即每次对 RDD 进行转换和动作操作)。根据依赖关系和计算过程的不同,可以将 RDD 划分为以下三个阶段:

  1. 无依赖阶段(无依赖任务)

无依赖阶段是指一个 RDD 中的所有分区都不依赖前一个 RDD 的任何分区,这意味着这个阶段的每个任务都是独立的,可以在相同的时间并行计算,不需要等待前一个 RDD 的任务完成。无依赖阶段的常见操作包括 filter 和 map 等。

  1. 窄依赖阶段(窄依赖任务)

窄依赖阶段是指一个 RDD 中的每个分区最多只依赖于前一个 RDD 中对应的一个分区的数据,这意味着这个阶段的任务可以并行执行,但需要保证每个任务读取数据时都是从正确的前一个 RDD 分区读取的。窄依赖阶段的常见操作包括 flatMap、union 和 distinct 等。

  1. 宽依赖阶段(宽依赖任务)

宽依赖阶段是指一个 RDD 中的每个分区需要读取其前一个 RDD 中的所有分区的数据,这意味着这个阶段的任务必须要等待前一个 RDD 所有任务完成之后才能进行计算。宽依赖阶段的常见操作包括 groupByKey、reduceByKey 和 join 等。宽依赖阶段的任务不能并行执行,需要等待前一个 RDD 所有任务完成后才能开始计算。

每个 RDD 的计算都可以被划分为一个或多个阶段,每个阶段对应着执行一组计算任务。Spark 可以通过对 RDD 的阶段划分来进行优化,使得计算任务可以并行执行,最大化计算资源的利用,提高性能和效率。

6.RDD运行过程

RDD在Spark架构中的运行过程:

  1. 创建RDD对象;

  2. SparkContext负责计算RDD之间的依赖关系,构建DAG;

  3. DAGScheduler负责把DAG图分解成多个Stage,每个Stage中包含了多个Task,每个Task会被TaskScheduler分发给各个WorkerNode上的Executor去执行。

4.Spark部署方式

Spark 的部署方式主要有以下几种:

  1. Standalone 模式

Standalone 模式是 Spark 自带的一种简单的部署方式,使用 Spark 自带的资源管理器进行任务的调度和资源分配,适合于单机和本地测试环境。在该模式下,Spark 的驱动程序和 Worker 都运行在同一台机器上,Spark 集群中仅有一个 Master 节点和多个 Worker 节点,可以通过配置文件指定 Worker 节点的数量。该模式部署简单,管理和维护成本低,但是在大规模分布式环境中,性能和资源利用率有限。

  1. YARN 模式

YARN 模式是 Spark 在 Hadoop 生态圈中的一种常见的部署方式,通过 Hadoop YARN 资源管理器进行任务调度和资源分配,适合于大规模分布式环境。在该模式下,Spark Driver 运行在 YARN 上,通过启动多个 Executor 进程在集群中执行任务。该模式充分利用了 Hadoop 的资源调度和故障管理优势,但是也受到 Hadoop 集群配置和管理的限制。

  1. Mesos 模式

Mesos 模式是 Spark 支持的另一种分布式集群管理器,核心思想是通过 Mesos 提供的资源分配器为各个任务分配资源,可以支持多个框架共享集群资源,也支持资源的弹性调度。在该模式下,Spark Driver 运行在 Mesos 上,通过 Mesos 启动多个 Executor 进程在集群中运行。该模式具有高可用性,资源调度效率高,支持多种框架共享资源,但需要安装和配置 Mesos 集群管理器。

  1. Kubernetes 模式

Kubernetes 模式是 Spark 最新支持的一种部署方式,通过 Kubernetes 容器编排系统进行资源管理和调度,可以支持多租户和灵活的资源管理。在该模式下,Spark Driver 运行在 Kubernetes 上,通过启动多个 Executor 容器在 Kubernetes 集群中执行任务。该模式具有高可用性,资源调度效率高,支持容器编排和自动化管理,但需要学习和掌握 Kubernetes 的使用和配置。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

潜意识^

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值