[算法导论4-3 i] T(n)=T(n-2)+1/lg n的渐近界与对数积分li(x)

T ( n ) = T ( n − 2 ) + 1 / lg ⁡ n T(n)=T(n-2)+1/\lg n T(n)=T(n2)+1/lgn,给出 T ( n ) T(n) T(n)的渐近上界和下界。

递推可以得到,
T ( n ) = { T ( 2 ) + ∑ i = 2 n / 2 1 lg ⁡ 2 i 当  n 为偶数 T ( 1 ) + ∑ i = 1 ( n − 1 ) / 2 1 lg ⁡ ( 2 i + 1 ) 当  n 为奇数 T\left(n\right)=\left\{\begin{array}{l l}{{T(2)+\sum\limits_{i=2}^{n/2}\dfrac{1}{\lg 2i}}}&{\text{当 }{n}\text{为偶数}}\\ {T(1)+\sum\limits_{i=1}^{(n-1)/2}\dfrac{1}{\lg (2i+1)}}&{\text{当 }{n}\text{为奇数}} \end{array}\right. T(n)= T(2)+i=2n/2lg2i1T(1)+i=1(n1)/2lg(2i+1)1 n为偶数 n为奇数

难点在于求 ∑ i = 2 n / 2 1 lg ⁡ 2 i \sum\limits_{i=2}^{n/2}\dfrac{1}{\lg 2i} i=2n/2lg2i1 ∑ i = 1 ( n − 1 ) / 2 1 lg ⁡ ( 2 i + 1 ) \sum\limits_{i=1}^{(n-1)/2}\dfrac{1}{\lg (2i+1)} i=1(n1)/2lg(2i+1)1。先给出 n n n为偶数情况下的讨论。
even

考虑如上的图示,底边组成 [ 1 , n / 2 ] [1,n/2] [1,n/2]的阴影矩形的面积之和即为 ∑ i = 2 n / 2 1 lg ⁡ 2 i \sum\limits_{i=2}^{n/2}\dfrac{1}{\lg 2i} i=2n/2lg2i1,或者可以表示为 ∫ 1 n / 2 d x lg ⁡ 2 ⌈ x ⌉ \displaystyle{\int_1^{n/2}\dfrac{\mathrm{d}x}{\lg 2\lceil x\rceil}} 1n/2lg2xdx,其中被积分函数 g ( x ) = 1 lg ⁡ 2 ⌈ x ⌉ g(x)=\dfrac{1}{\lg 2\lceil x\rceil} g(x)=lg2x1的图线就是所有长方形顶边组成的阶梯。下面考虑使用大 O O O 表示法将该函数表示为可积的形式。

考虑 g ( x ) g(x) g(x) f ( x ) = 1 lg ⁡ 2 x f(x)=\dfrac{1}{\lg 2x} f(x)=lg2x1之间的“垂直距离”。注意到 f ( x ) f(x) f(x) ( 1 / 2 , ∞ ) (1/2,\infty) (1/2,)上单调递减,故在区间 [ j , j + 1 ) [j,j+1) [j,j+1)上有

max ⁡ ( f ( x ) − g ( x ) ) = f ( j ) − g ( j ) = 1 lg ⁡ 2 j − 1 lg ⁡ 2 ( j + 1 ) = 1 lg ⁡ 2 ⌊ x ⌋ − 1 lg ⁡ 2 ( ⌊ x ⌋ + 1 ) , \max (f(x)-g(x))=f(j)-g(j)=\dfrac{1}{\lg 2j}-\dfrac{1}{\lg 2(j+1)}=\dfrac{1}{\lg 2\lfloor x\rfloor}-\dfrac{1}{\lg 2(\lfloor x\rfloor+1)}, max(f(x)g(x))=f(j)g(j)=lg2j1lg2(j+1)1=lg2x1lg2(⌊x+1)1,

或者说对 ∀   x ∈ [ j , j + 1 ) \forall\,x\in[j,j+1) x[j,j+1) f ( x ) − g ( x ) = O ( 1 lg ⁡ 2 ⌊ x ⌋ − 1 lg ⁡ 2 ( ⌊ x ⌋ + 1 ) ) f(x)-g(x)=O(\dfrac{1}{\lg 2\lfloor x\rfloor}-\dfrac{1}{\lg 2(\lfloor x\rfloor+1)}) f(x)g(x)=O(lg2x1lg2(⌊x+1)1),其中 j = 1 , 2 , … , n / 2 − 1 j=1,2,\dots,n/2-1 j=1,2,,n/21

这就引出了
∑ i = 2 n / 2 1 lg ⁡ 2 i = ∫ 1 n / 2 1 lg ⁡ 2 x − O ( 1 lg ⁡ 2 ⌊ x ⌋ − 1 lg ⁡ 2 ( ⌊ x ⌋ + 1 ) )   d x = ∫ 1 n / 2 d x lg ⁡ 2 x − O ( ∫ 1 n / 2 1 lg ⁡ 2 ⌊ x ⌋ − 1 lg ⁡ 2 ( ⌊ x ⌋ + 1 )   d x ) = ln ⁡ 2 2 l i ( 2 x ) ∣ 1 n / 2 − O ( 1 lg ⁡ 2 − 1 lg ⁡ n ) = ln ⁡ 2 2 l i ( n ) − ln ⁡ 2 2 l i ( 2 ) + O ( 1 lg ⁡ n ) = Θ ( n lg ⁡ n ) + Θ ( 1 ) + O ( 1 lg ⁡ n ) = Θ ( n lg ⁡ n ) . \begin{aligned} \sum\limits_{i=2}^{n/2}\dfrac{1}{\lg 2i}&=\int_1^{n/2}\dfrac{1}{\lg 2x}-O(\dfrac{1}{\lg 2\lfloor x\rfloor}-\dfrac{1}{\lg 2(\lfloor x\rfloor+1)})\,\mathrm{d}x\\ &=\int_1^{n/2}\dfrac{\mathrm{d}x}{\lg 2x}-O\big(\int_1^{n/2}\dfrac{1}{\lg 2\lfloor x\rfloor}-\dfrac{1}{\lg 2(\lfloor x\rfloor+1)}\,\mathrm{d}x\big)\\ &=\dfrac{\ln 2}{2}\mathrm{li}(2x)\bigg|_1^{n/2}-O(\dfrac{1}{\lg 2}-\dfrac{1}{\lg n})\\ &=\dfrac{\ln 2}{2}\mathrm{li}(n)-\dfrac{\ln 2}{2}\mathrm{li}(2)+O(\dfrac{1}{\lg n})\\ &=\Theta(\dfrac{n}{\lg n})+\Theta(1)+O(\dfrac{1}{\lg n})=\Theta(\dfrac{n}{\lg n}). \end{aligned} i=2n/2lg2i1=1n/2lg2x1O(lg2x1lg2(⌊x+1)1)dx=1n/2lg2xdxO(1n/2lg2x1lg2(⌊x+1)1dx)=2ln2li(2x) 1n/2O(lg21lgn1)=2ln2li(n)2ln2li(2)+O(lgn1)=Θ(lgnn)+Θ(1)+O(lgn1)=Θ(lgnn).

不难注意到, O ( ∫ 1 n / 2 1 lg ⁡ 2 ⌊ x ⌋ − 1 lg ⁡ 2 ( ⌊ x ⌋ + 1 )   d x ) \displaystyle{O\big(\int_1^{n/2}\dfrac{1}{\lg 2\lfloor x\rfloor}-\dfrac{1}{\lg 2(\lfloor x\rfloor+1)}\,\mathrm{d}x\big)} O(1n/2lg2x1lg2(⌊x+1)1dx)所代表的实际上就是 f ( x ) f(x) f(x) g ( x ) g(x) g(x)所夹白色区域面积之和,而 ∫ 1 n / 2 1 lg ⁡ 2 ⌊ x ⌋ − 1 lg ⁡ 2 ( ⌊ x ⌋ + 1 )   d x \displaystyle{\int_1^{n/2}\dfrac{1}{\lg 2\lfloor x\rfloor}-\dfrac{1}{\lg 2(\lfloor x\rfloor+1)}\,\mathrm{d}x} 1n/2lg2x1lg2(⌊x+1)1dx 恰好是所有白色区域左边界的长度之和,即 f ( 1 ) − f ( n 2 ) = 1 lg ⁡ 2 − 1 lg ⁡ n f(1)-f(\dfrac{n}{2})=\dfrac{1}{\lg 2}-\dfrac{1}{\lg n} f(1)f(2n)=lg21lgn1。当然,也可将其分解为在每个子区间 [ j , j + 1 ) [j,j+1) [j,j+1)上求积分: ∫ j j + 1 1 lg ⁡ 2 ⌊ x ⌋ − 1 lg ⁡ 2 ( ⌊ x ⌋ + 1 )   d x = 1 lg ⁡ 2 j − 1 lg ⁡ 2 ( j + 1 ) \displaystyle{\int_j^{j+1}\dfrac{1}{\lg 2\lfloor x\rfloor}-\dfrac{1}{\lg 2(\lfloor x\rfloor+1)}\,\mathrm{d}x}=\dfrac{1}{\lg 2j}-\dfrac{1}{\lg 2(j+1)} jj+1lg2x1lg2(⌊x+1)1dx=lg2j1lg2(j+1)1 j = 1 , 2 , … , n / 2 − 1 j=1,2,\dots,n/2-1 j=1,2,,n/21

下面介绍对数积分函数 l i ( x ) \mathrm{li}(x) li(x)并说明 l i ( n ) = Θ ( n lg ⁡ n ) \mathrm{li}(n)=\Theta(\dfrac{n}{\lg n}) li(n)=Θ(lgnn)


对所有正实数 x ≠ 1 x\neq 1 x=1,定义 l i ( x ) = ∫ 0 x d t ln ⁡ t \displaystyle{\mathrm{li}(x)=\int_0^x\dfrac{\mathrm{d}t}{\ln t}} li(x)=0xlntdt。由于 lim ⁡ x → 1 l i ( x ) = − ∞ \lim\limits_{x\to 1}\mathrm{li}(x)=-\infty x1limli(x)=,当 x > 1 x>1 x>1时,该积分只能以第二类反常积分解释,即 l i ( x ) = lim ⁡ ε → 0 ( ∫ 0 1 − ε d t ln ⁡ ( t ) + ∫ 1 + ε x d t ln ⁡ ( t ) ) \displaystyle \mathrm{li}(x)=\lim _{\varepsilon \to 0}\left(\int _{0}^{1-\varepsilon }{\frac {dt}{\ln(t)}}+\int _{1+\varepsilon }^{x}{\frac {dt}{\ln(t)}}\right) li(x)=ε0lim(01εln(t)dt+1+εxln(t)dt)。下面给出 l i ( x ) \mathrm{li}(x) li(x)的图像,可见,函数在 ( 1 , ∞ ) (1,\infty) (1,)上是单调递增的。

li_x

l i ( x ) \mathrm{li}(x) li(x)的渐近展开式为 l i ( x ) = x ln ⁡ x ∑ k = 0 ∞ k ! ( ln ⁡ x ) k \mathrm{li}(x)=\dfrac {x}{\ln x}\sum\limits_{k=0}^{\infty}\dfrac{k!}{(\ln x)^k} li(x)=lnxxk=0(lnx)kk! (该级数是发散的)。维基百科 给出了 l i ( x ) \mathrm{li}(x) li(x)的渐近上界: l i ( x ) = O ( x ln ⁡ x ) \mathrm{li}(x)=O(\dfrac{x}{\ln x}) li(x)=O(lnxx)。实际上,我们很容易证明 x ln ⁡ x \dfrac{x}{\ln x} lnxx也是 l i ( x ) \mathrm{li}(x) li(x)的渐近下界。下面给出 l i ( x ) = Θ ( x ln ⁡ x ) \mathrm{li}(x)=\Theta(\dfrac{x}{\ln x}) li(x)=Θ(lnxx)的证明。

  • 下证 ∃   x 1 > 0 \exists\,x_1>0 x1>0,当 x ≥ x 1 x\ge x_1 xx1时, l i ( x ) ≤ 2 x ln ⁡ x \mathrm{li}(x)\le \dfrac{2x}{\ln x} li(x)lnx2x总成立。记 h 1 ( x ) = 2 x ln ⁡ x − l i ( x ) h_1(x)=\dfrac{2x}{\ln x}-\mathrm{li}(x) h1(x)=lnx2xli(x),则当 x > e 2 x>e^2 x>e2时, d h 1 ( x ) d x = ln ⁡ x − 2 ( ln ⁡ x ) 2 > 0 \dfrac{\mathrm{d}h_1(x)}{\mathrm{d}x}=\dfrac{\ln x-2}{(\ln x)^2}>0 dxdh1(x)=(lnx)2lnx2>0 。而 h 1 ( e 2 ) ≈ 2.435 > 0 h_1(e^2)\approx 2.435>0 h1(e2)2.435>0,故当 x ≥ 8 x\ge 8 x8时, h 1 ( x ) ≥ 0   ⇔   l i ( x ) ≤ 2 x ln ⁡ x h_1(x)\ge 0\,\Leftrightarrow\,\mathrm{li}(x)\le \dfrac{2x}{\ln x} h1(x)0li(x)lnx2x成立, l i ( x ) = O ( x ln ⁡ x ) \mathrm{li}(x)=O(\dfrac{x}{\ln x}) li(x)=O(lnxx)。事实上, ∀   c 1 > 1 \forall\, c_1>1 c1>1,对足够大的 x x x l i ( x ) ≤ c 1 x ln ⁡ x \mathrm{li}(x)\le \dfrac{c_1 x}{\ln x} li(x)lnxc1x总能成立。
  • 下证 ∃   x 2 > 0 \exists\,x_2>0 x2>0,当 x ≥ x 2 x\ge x_2 xx2时, l i ( x ) ≥ x 2 ln ⁡ x ≥ 0 \mathrm{li}(x)\ge \dfrac{x}{2\ln x}\ge 0 li(x)2lnxx0总成立。记 h 2 ( x ) = 2   l i ( x ) − x ln ⁡ x h_2(x)=2\,\mathrm{li}(x)-\dfrac{x}{\ln x} h2(x)=2li(x)lnxx,则当 x > 1 x>1 x>1时, d h 1 ( x ) d x = 1 ln ⁡ x + \dfrac{\mathrm{d}h_1(x)}{\mathrm{d}x}=\dfrac{1}{\ln x}+ dxdh1(x)=lnx1+ 1 ( ln ⁡ x ) 2 > 0 \dfrac{1}{(\ln x)^2}>0 (lnx)21>0 。而 h 2 ( 3 ) ≈ 1.596 > 0 h_2(3)\approx 1.596>0 h2(3)1.596>0,故当 x ≥ 3 x\ge 3 x3时, h 2 ( x ) ≥ 0   ⇔   l i ( x ) ≥ x 2 ln ⁡ x h_2(x)\ge 0\,\Leftrightarrow\,\mathrm{li}(x)\ge \dfrac{x}{2\ln x} h2(x)0li(x)2lnxx成立, l i ( x ) = Ω ( x ln ⁡ x ) \mathrm{li}(x)=\Omega(\dfrac{x}{\ln x}) li(x)=Ω(lnxx)。事实上, ∀   0 < c 2 ≤ 1 \forall\,0<c_2\le 1 0<c21,只需 x ≥ 4 x\ge 4 x4 l i ( x ) ≥ c 2 x ln ⁡ x \mathrm{li}(x)\ge \dfrac{c_2 x}{\ln x} li(x)lnxc2x就总能成立。

综上, l i ( x ) = Θ ( x ln ⁡ x ) \mathrm{li}(x)=\Theta(\dfrac{x}{\ln x}) li(x)=Θ(lnxx)证毕。回到求 T ( n ) T(n) T(n)渐近界的问题,由 l i ( n ) = Θ ( n lg ⁡ n ) \mathrm{li}(n)=\Theta(\dfrac{n}{\lg n}) li(n)=Θ(lgnn)可知,
T ( n ) = T ( 2 ) + ∑ i = 2 n / 2 1 lg ⁡ 2 i = Θ ( 1 ) + Θ ( n lg ⁡ n ) = Θ ( n lg ⁡ n ) . T(n)=T(2)+\sum\limits_{i=2}^{n/2}\dfrac{1}{\lg 2i}=\Theta(1)+\Theta(\dfrac{n}{\lg n})=\Theta(\dfrac{n}{\lg n}). T(n)=T(2)+i=2n/2lg2i1=Θ(1)+Θ(lgnn)=Θ(lgnn).


我们已经求得了 n n n为偶数情况下, T ( n ) T(n) T(n)的渐近界。采取类似方法,下面证明 n n n为奇数时亦有 T ( n ) = Θ ( n lg ⁡ n ) T(n)=\Theta(\dfrac{n}{\lg n}) T(n)=Θ(lgnn)

要证: ∑ i = 1 ( n − 1 ) / 2 1 lg ⁡ ( 2 i + 1 ) = Θ ( n lg ⁡ n ) \sum\limits_{i=1}^{(n-1)/2}\dfrac{1}{\lg (2i+1)}=\Theta(\dfrac{n}{\lg n}) i=1(n1)/2lg(2i+1)1=Θ(lgnn)。在讨论 n n n为偶数的情况时,我们从线段 x = i , y ∈ [ 0 , f ( i ) ]   ( i = 2 , 3 , … , n / 2 ) x=i,y\in[0,f(i)]\,(i=2,3,\dots,n/2) x=i,y[0,f(i)](i=2,3,,n/2)作宽为1的矩形。然而,注意到 lim ⁡ x → 0 + 1 lg ⁡ ( 2 x + 1 ) = + ∞ \lim\limits_{x\to 0^+}\dfrac{1}{\lg(2x+1)}=+\infty x0+limlg(2x+1)1=+,如果效仿这种做法,我们发现在区间 [ 0 , 1 ) [0,1) [0,1)上对 p ( x ) = 1 lg ⁡ ( 2 x + 1 ) p(x)=\dfrac{1}{\lg(2x+1)} p(x)=lg(2x+1)1积分得到无穷。因此,对于 n n n为奇数的情况,我们采取从 x = i , y ∈ [ 0 , p ( i ) ]   ( i = 1 , 2 , … , n − 1 2 ) x=i,y\in[0,p(i)]\,(i=1,2,\dots,\dfrac{n-1}{2}) x=i,y[0,p(i)](i=1,2,,2n1)作矩形,于是有
odd

∑ i = 1 ( n − 1 ) / 2 1 lg ⁡ ( 2 i + 1 ) = ∫ 1 ( n + 1 ) / 2 1 lg ⁡ ( 2 x + 1 ) + O ( 1 lg ⁡ ( 2 ⌊ x ⌋ + 1 ) − 1 lg ⁡ ( 2 ⌊ x ⌋ + 3 ) )   d x = ∫ 1 ( n + 1 ) / 2 d x lg ⁡ ( 2 x + 1 ) + O ( ∫ 1 ( n + 1 ) / 2 1 lg ⁡ ( 2 ⌊ x ⌋ + 1 ) − 1 lg ⁡ ( 2 ⌊ x ⌋ + 3 )   d x ) = ln ⁡ 2 2 l i ( n + 2 ) − ln ⁡ 2 2 l i ( 3 ) + O ( 1 lg ⁡ 3 − 1 lg ⁡ ( n + 2 ) ) = Θ ( n lg ⁡ n ) + Θ ( 1 ) + O ( 1 lg ⁡ n ) = Θ ( n lg ⁡ n ) . \begin{aligned} \sum\limits_{i=1}^{(n-1)/2}\dfrac{1}{\lg (2i+1)}&=\int_1^{(n+1)/2}\dfrac{1}{\lg (2x+1)}+O(\dfrac{1}{\lg (2\lfloor x\rfloor+1)}-\dfrac{1}{\lg (2\lfloor x\rfloor+3)})\,\mathrm{d}x\\ &=\int_1^{(n+1)/2}\dfrac{\mathrm{d}x}{\lg (2x+1)}+O\big(\int_1^{(n+1)/2}\dfrac{1}{\lg (2\lfloor x\rfloor+1)}-\dfrac{1}{\lg (2\lfloor x\rfloor+3)}\,\mathrm{d}x\big)\\ &=\dfrac{\ln 2}{2}\mathrm{li}(n+2)-\dfrac{\ln 2}{2}\mathrm{li}(3)+O(\dfrac{1}{\lg 3}-\dfrac{1}{\lg(n+2)})\\ &=\Theta(\dfrac{n}{\lg n})+\Theta(1)+O(\dfrac{1}{\lg n})=\Theta(\dfrac{n}{\lg n}). \end{aligned} i=1(n1)/2lg(2i+1)1=1(n+1)/2lg(2x+1)1+O(lg(2x+1)1lg(2x+3)1)dx=1(n+1)/2lg(2x+1)dx+O(1(n+1)/2lg(2x+1)1lg(2x+3)1dx)=2ln2li(n+2)2ln2li(3)+O(lg31lg(n+2)1)=Θ(lgnn)+Θ(1)+O(lgn1)=Θ(lgnn).

其中第四步用到的 l i ( n + 2 ) = Θ ( l i ( n ) ) \mathrm{li}(n+2)=\Theta(\mathrm{li}(n)) li(n+2)=Θ(li(n)) 1 lg ⁡ ( n + 2 ) = Θ ( 1 lg ⁡ ( n ) ) \dfrac{1}{\lg(n+2)}=\Theta(\dfrac{1}{\lg(n)}) lg(n+2)1=Θ(lg(n)1)用代入法易证。到此,对任意 n n n证得 T ( n ) = Θ ( n lg ⁡ n ) T(n)=\Theta(\dfrac{n}{\lg n}) T(n)=Θ(lgnn)


注记:

  1. 根据上述两种情况讨论中用到的策略,有如下不等式:
    ∫ m n + 1 f ( x ) d x ≤ ∑ i = m n f ( i ) ≤ ∫ m − 1 n f ( x ) d x , \int_{m}^{n+1}f(x)\mathrm{d}x\le \sum_{i=m}^n f(i)\le \int_{m-1}^{n}f(x)\mathrm{d}x, mn+1f(x)dxi=mnf(i)m1nf(x)dx,

    其中 0 < m < n 0<m<n 0<m<n f ( x ) f(x) f(x) [ k − 1 , n + 1 ] [k-1,n+1] [k1,n+1]上可积、非负且单调递减。(若 f ( x ) f(x) f(x)单调递增,则将所有“ ≤ \le ”换成“ ≥ \ge ”。)

    于是,我们也可以使用该不等式对原问题进行求解,以 n n n为偶数情况为例,分别求出渐近下界和渐近上界:

    ln ⁡ 2 2 ( l i ( n + 2 ) − l i ( 4 ) ) = ∫ 2 n / 2 + 1 d x lg ⁡ 2 x ≤ ∑ i = 2 n / 2 1 lg ⁡ 2 i ≤ ∫ 1 n / 2 d x lg ⁡ 2 x = ln ⁡ 2 2 ( l i ( n ) − l i ( 2 ) ) . \dfrac{\ln 2}{2}(\mathrm{li}(n+2)-\mathrm{li}(4))=\int_2^{n/2+1}\dfrac{\mathrm{d}x}{\lg 2x}\le \sum_{i=2}^{n/2}\dfrac{1}{\lg 2i}\le \int_1^{n/2}\dfrac{\mathrm{d}x}{\lg 2x}=\dfrac{\ln 2}{2}(\mathrm{li}(n)-\mathrm{li}(2)). 2ln2(li(n+2)li(4))=2n/2+1lg2xdxi=2n/2lg2i11n/2lg2xdx=2ln2(li(n)li(2)).

    这也表明 ∑ i = 2 n / 2 1 lg ⁡ 2 i = Θ ( l i ( n ) ) = Θ ( n lg ⁡ n ) \sum\limits_{i=2}^{n/2}\dfrac{1}{\lg 2i}=\Theta(\mathrm{li}(n))=\Theta(\dfrac{n}{\lg n}) i=2n/2lg2i1=Θ(li(n))=Θ(lgnn)

  2. 对数积分 l i ( x ) \mathrm{li}(x) li(x)与其他特殊函数的关系:

    • 欧拉对数积分 L i ( x ) = ∫ 2 x d t ln ⁡ t = l i ( x ) − l i ( 2 ) \displaystyle \mathrm{Li}(x)=\int_2^x\dfrac{\mathrm{d}t}{\ln t}=\mathrm{li}(x)-\mathrm{li}(2) Li(x)=2xlntdt=li(x)li(2) 规避了 l i ( x ) \mathrm{li}(x) li(x)的不连续点,有时可在相似情况下替代 l i ( x ) \mathrm{li}(x) li(x)。对数积分在数论中有重要的应用,例如素数定理表明,对正实数 x x x,不大于 x x x的素数个数为 π ( x ) = L i ( x ) + O ( x e − 1 15 ln ⁡ x ) \pi(x)=\mathrm{Li}(x)+O(xe^{-{\frac{1}{15}}\sqrt{\ln x}}) π(x)=Li(x)+O(xe151lnx )
    • l i ( x ) \mathrm{li}(x) li(x)与指数积分 E i ( x ) = ∫ − ∞ x e t t d t \displaystyle \mathrm{Ei}(x)=\int_{-\infty}^x\dfrac{e^t}{t}\mathrm{d}t Ei(x)=xtetdt 有如下关系: l i ( x ) = E i ( ln ⁡ x ) , x ≠ 1 \mathrm{li}(x)=\mathrm{Ei}(\ln x), x\ne1 li(x)=Ei(lnx),x=1
  3. 借助可视化往往对渐近界类问题的分析有较大帮助,GeoGebra 提供了一款强大的在线图形计算器。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值