经典算法-尺取法

尺取法是一种经典的算法思想,通常用于在一维数组或序列中寻找满足某种条件的区间或子序列。它的核心思想是维护一个左右端点组成的“尺子”,根据题目中要求的条件不断调节端点,从而寻找符合条件的区间或子序列。

尺取法的实现通常有以下几步:

  1. 初始化尺子的左右端点,通常将它们都置为 0。
  2. 不断将右端点向右移动,直到满足题目中的某个条件。
  3. 不断将左端点向右移动,直到不满足题目中的某个条件为止。
  4. 重复步骤 2 和步骤 3,直到右端点达到数组或序列的末尾。

这样得到的左右端点就是符合条件的区间或子序列。

尺取法可以用于解决许多区间或子序列问题,例如最短连续子数组、最长不重复子串、最小覆盖子串、滑动窗口等问题。

下面举一个例子来说明尺取法的应用。

假设有一个包含 n 个正整数的数组 a,以及一个目标值 m。需要在数组中找到一个子数组,使得这个子数组中的元素之和等于 m,如果有多个满足要求的子数组,输出其中最短的一个。

我们可以使用尺取法来解决这个问题。具体步骤如下:

  1. 初始化左右端点 l 和 r,都为 0。
  2. 将右端点向右移动,直到子数组 [l, r] 的元素之和大于等于 m。
  3. 不断将左端点向右移动,直到子数组 [l, r] 的元素之和小于 m。
  4. 计算当前子数组的长度 len = r - l + 1,如果 len 是目前找到的最短子数组的长度,记录当前子数组的左右端点。
  5. 重复步骤 2 到步骤 4,直到右端点 r 达到数组末尾。

这样,我们就可以在 O(n) 的时间复杂度内解决这个问题。

下面是代码实现:

public static int[] findShortestSubarray(int[] a, int m) {
    int n = a.length;
    int[] ans = {0, n - 1};
    int sum = 0, len = Integer.MAX_VALUE;
    for (int l = 0, r = 0; r < n; r++) {
        sum += a[r];
        while (l <= r && sum >= m) {
            if (r - l + 1 < len) {
                len = r - l + 1;
                ans[0] = l;
                ans[1] = r;
            }
            sum -= a[l++];
        }
    }
    return ans;
}

在这个实现中,我们使用了双指针 l 和 r 分别表示子数组的左右端点,变量 sum 存储当前子数组的元素之和。在每次右端点向右移动后,我们使用 while 循环将左端点向右移动,直到子数组的元素之和小于 m。在这个过程中,我们记录当前子数组的长度 len,如果 len 小于目前找到的最短子数组的长度,就更新记录的左右端点。最终返回记录的左右端点即可。

这个实现的时间复杂度是 O(n),空间复杂度是 O(1)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值