- 博客(18)
- 收藏
- 关注
原创 12.10 文献阅读(思维链的部分)
首先,PROMPTBREEDER使用一组初始的变异提示(mutation-prompts)、思考风格(thinking-styles)和领域特定的问题描述(problem description)来初始化一个变异任务提示(task-prompt)种群。推理链使用一系列三元组结构表示,每个三元组表示为(头部实体,关系,尾部实体),并用掩码表示需要填充的部分。:元推理器生成解释时,会考虑多个推理链中的事实,综合这些事实来生成高质量的解释。:然后,从三个来源获取知识来填充推理链中的掩码,从而得出最终答案。
2024-12-10 20:02:45
264
原创 There is No Big Brother or Small Brother: Knowledge Infusion inLanguage Models for Link Prediction
无论大小:在语言模型中添加知识以应用于链接预测与问答》
2024-06-17 16:47:56
468
原创 Multi-perspective Improvement of Knowledge Graph Completionwith Large Language Models
这些模型利用改进后的知识图谱进行链接预测和三元组分类任务 ==》评估增强后的知识图谱在实际应用中的效果。的角度改进知识图谱的框架。蓝色代表实体名、红色代表关系名。《利用大语言模型多方位改进知识图谱补全》原始知识图谱 ==》增强后的知识图谱。
2024-06-14 14:32:21
479
1
原创 KICGPT: Large Language Model with Knowledge in Context for Knowledge Graph Completion
利用 LLM 和知识提示进行 KGC,无需额外训练。:能有效处理长尾实体,减少了计算资源和数据需求。:在标准数据集上表现优异,验证了方法的有效性。
2024-06-06 19:55:11
609
原创 SAttle模型与传统Transformer模型比较
传统的 Transformer 模型主要设计用于处理自然语言处理(NLP)任务,比如机器翻译、文本生成等。这些任务中的数据通常是连续的序列,例如句子中的单词序列。Transformer 模型通过自注意力机制捕捉序列中各个元素之间的依赖关系和上下文信息。SAttLE 模型针对知识图谱(KG)的结构化数据进行了优化,具体的差异和优化之处如下所示。
2024-05-16 21:31:08
500
原创 Attention(注意力机制)
重点关注点在红色区域。因为红色区域可能包包含更多的信息,更重要的信息。注意力机制:我们会将焦点聚焦在比较重要的事物上。
2024-05-15 16:01:15
133
原创 具有语义感知嵌入的开放知识图谱链接预测
本文提出了一个名为SeAE(Open Knowledge Graph Link Prediction with Semantic-Aware Embedding)的模型,旨在改进开放知识图谱(OpenKGs)中的链接预测任务。
2024-04-25 23:10:09
706
1
原创 TranSHER: 通过双曲椭球限制翻译知识图谱嵌入
TranSHER提出了一种新的得分函数,它引入了针对头尾实体之间的特定关系翻译,从而放松超椭球约束。这种直观且简单的特定关系翻译使得TranSHER能够在优化上提供更直接的指导,并能更好地捕捉具有复杂关系的实体的语义特性。实验结果显示,TranSHER在链接预测上实现了显著性能提升,且在不同领域和规模的数据集上具有良好泛化性。
2024-04-18 22:54:02
882
1
原创 CoKE: 上下文化的知识图谱嵌入
本工作提出了一种新型范式——Contextualized Knowledge Graph Embedding (CoKE),它考虑了这种上下文性质,并学习动态、灵活和完全上下文化的实体和关系嵌入。本文研究了两种图上下文:边和路径,并将它们都制定为实体和关系的序列。CoKE以序列为输入,并使用Transformer编码器获得上下文化的表示。这些表示因此自然地适应输入,捕获其中实体和关系的上下文含义。在多种公共基准测试上的评估验证了CoKE在链接预测和路径查询回答方面的优越性。
2024-04-18 21:35:13
638
1
原创 HittER-用于知识图谱嵌入的层次化Transformer
HittER——Hierarchical Transformers for Knowledge Graph Embeddings该模型旨在解决复杂多关系知识图谱中实体和关系表示学习的挑战性问题。作者提出了一种双层Transformer结构,用于联合学习源实体邻域中的实体-关系组合与基于上下文的关系表达。
2024-04-18 20:42:05
448
1
原创 基于自注意的低维知识图谱嵌入链接预测
引入了SAttLE,一个高度表达的基于Transformer的知识图谱编码器,以解决庞大知识图谱上的可扩展性问题。我们研究了自注意力头的重要性,并通过由单个Transformer编码器和大量头组成的新结构减少了模型大小。我们在FB15k-237和WN18RR标准链接预测基准上,通过显著降低66.9%的嵌入维度,与最先进的模型相比,实现了竞争性的性能,与前五名竞争对手相比平均降低了维度。
2024-04-17 19:02:07
1167
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人