论文题目:基于时间卷积网络,改进Aquila优化器和随机森林的元启发式进化深度学习模型,用于降雨—径流模拟和多步预测
TCN模型:
优点
- 可并行化计算:TCN 采用卷积操作,可以进行高效的并行计算,充分利用现代硬件加速能力,适用于大规模数据处理。
- 捕捉局部依赖关系:TCN 通过堆叠卷积层并增大卷积核的感受野,可以有效地捕捉序列数据中的局部依赖关系。
- 稳定的梯度传播:相对于RNN,TCN 训练中的梯度传播更稳定,不容易遇到梯度消失或梯度爆炸的问题。
本文思路:采用TCN模型进行降雨—径流模拟和多布径流预测,然后用IAO算法,对模型中的一些超参数进行相应的优化
本文结论:
- TCN的RMSE和NSE分别为“TCN的RMSE和NSE分别为292.4738m 3 /s和0.9652,LSTM的RMSE和NSE分别为314.7961m 3 /s和0.9597”
- “从实验结果可以清楚地看出,在模型中添加RF处理输入数据可以显著提高模型的预测精度”
- “径流预测中应用了更复杂的模型,模型中超参数的调整对预测结果的影响更大。该文采用改进的AO算法对模型中的参数进行调整,进一步发挥模型的性能”