港硕上岸鹅厂算法岗,谈谈感受和心得!

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对大模型技术趋势、算法项目落地经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。

总结链接如下:

《大模型面试宝典》(2024版) 发布!

喜欢本文记得收藏、关注、点赞。更多实战和面试交流,文末加入我们


不知不觉间,我已经在鹅厂实习将近一个月了,简单分享一下自己的感受。

来鹅厂之前,我投递了哈罗、拼多多、滴滴、美团等多家大厂,有的无疾而终、有的感觉不合适,最终选择来这里。

关于工作

岗位是搜广推算法岗方向,做的是自己感兴趣的领域和内容,没有脏活。

mentor 超级无敌负责这个我真的哭死,一有问题 mentor 能站在我身边亲手指导,总之觉得自己还挺幸运的。

一点点思考

我觉得来大厂实习首先要有一个祛魅的过程,从最开始的十分憧憬到真正去做时候会有些失落和不适,再到后面渐渐习惯并发现其中的乐趣。

实习阶段个人觉得最重要的就是想清楚,这份工作到底适不适合自己,能不能当做长久工作去坚持甚至会不会有一定热爱,和自己的人生规划和发展一不一致。

毕竟人生的选择可能比没有思考的努力更重要,当这些问题彻底想清楚了,可能就不会有时候焦虑的睡不着觉啦

关于福利

鹅厂福利待遇还是很不差的:入职时会提供7天的中转宿舍,每天提供早餐20晚餐50的餐券,午餐一般花费20-30r。

午休除去1h吃饭时间,足足可以休息1h。每周三健康日,晚餐后就可以直接走。工位很大,健身房器械也比较齐全。

高频面经

面试内容总结为两个方面,一是岗位相关算法,二是绕不开的大模型

相关算法

  1. 二分类评估指标有哪些?
  2. AUC是什么?怎么画的,怎么计算的?
  3. BPR Loss是什么?
  4. NDCG指标是什么?怎么计算的?
  5. SVD原理?
  6. LightGBM和XGBoost的原理和区别?
  7. 逻辑回归原理?
  8. DeepFM模型原理?
  9. Wide&Deep模型原理?
  10. 准确率. 召回率,精准率定义和区别?
  11. 推荐业务流程介绍?
  12. 深度学习中防止过拟合的方法?
  13. Dropout在预测和训练阶段的区别?
  14. RNN原理?
  15. RNN有哪些变种?原理介绍?
  16. Word2Vec的原理介绍?
  17. Word2Vec中的CBow和Skip-gram是?
  18. LGB和XGB对缺失值的处理方式区别?
  19. RF和LGB在方差和偏差的区别?
  20. Transformer介绍?
  21. Self-attention和Target-attention区别?
  22. L1和L2的区别?
  23. Batch-norm和Layer-norm介绍和区别?
  24. Batch-norm使用时需要注意什么?
  25. 激活函数介绍和区别?
  26. 梯度爆炸或者为0时,如何解决?
  27. GAUC是什么?

大模型

  1. 为什么现在的大模型大多是 decoder-only 的架构?
  2. 讲一下 GPT 系列模型是如何演进的?
  3. 讲一下生成式语言模型的工作机理
  4. LLM中的因果语言建模与掩码语言建模有什么区别?
  5. 如何减轻LLM中的幻觉现象?
  6. 大模型数据集怎么构建的?
  7. 训练方法,用的什么,有什么不同,有什么优缺点,原理上解释不不同方法的差别
  8. 评估指标是什么,这些指标存在哪些问题,
  9. 模型推理是怎么做的,有没有cot,tot等等,还是单轮
  10. 模型可控性如何实现,怎么保证可控性
  11. 模型部署的平台,推理效率怎么样,如何提升推理效率
  12. 你觉得RAG和长上下文的区别在哪里?各自有什么优势?

总结一下:近期面试过的暑期这么多厂的高频提问点,如果你简历中也出现相关知识,那很可能会问哦~

技术交流

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了算法岗面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:技术交流
方式②、添加微信号:mlc2040,备注:技术交流+CSDN

用通俗易懂的方式讲解系列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值