接龙数列 DP

博客介绍了如何使用动态规划(DP)解决两个算法问题:895.最长上升子序列和4985.接龙数列。在最长上升子序列问题中,求解数列中严格单调递增子序列的最大长度。接龙数列问题则要求计算从给定数列中最少删除多少个数,使剩余序列成为接龙序列。博主分享了分析思路和代码实现,并反思了自己的算法掌握情况,强调了练习和复盘的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

895.最长上升子序列
题目描述

给定一个长度为 N的数列,求数值严格单调递增的子序列的长度最长是多少。

输入格式

第一行包含整数 N。

第二行包含 N个整数,表示完整序列。

输出格式

输出一个整数,表示最大长度。

数据范围

1≤N≤1000,
−109≤数列中的数≤109

输入样例

7

3 1 2 1 8 5 6

输出样例

4

分析

DP:状态表示+状态计算

(1)状态表示:f[i]

集合:以下标为i的数为结尾的上升子序列的集合

属性:MAX(取以下标为i的数为结尾的上升子序列的长度的最大值)

(2)状态计算

f[i]=max(f[j]+1),(j=0,1,2,…,i-1) 前提是f[j]<f[i]

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值