升级pytorch到2.0

本文描述了如何在Python3.7环境中从torch1.13.1升级到更高版本,包括遇到的问题(如pip升级失败需要升级Python到3.8及以上),以及最终使用conda成功升级的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

evns: torch 1.13.1 python 3.7

1.更新torch ->失败

直接使用pip指令更新torch,显示satisfied。

pip install --upgrade pytorch

后发现2.0的torch需要3.8版本及以上的python,故更新python。

2.更新python ->conda指令成功

使用pip指令更新python失败,使用conda指令更新成功。(为什么)

conda upgrade pytorch

3.更新torch ->成功

更新python后,pip指令更新torch。

pip install --upgrade pytorch

输入指令查看pytorch版本

conda list | grep torch

结果如下
在这里插入图片描述

### 如何在Linux系统上安装支持GPU的PyTorch 2.0 #### 确认Python版本 为了确保环境适配,在开始之前需确认当前使用的Python版本。由于部分旧版Linux可能预装较低版本的Python,建议先升级至至少3.7以上版本[^2]。 #### 准备CUDA环境 对于希望利用GPU加速计算的任务而言,合适的CUDA工具包不可或缺。应依据显卡型号及驱动情况下载对应版本的CUDA Toolkit并完成配置,这一步骤虽未直接提及于给定资料内,却是成功部署GPU加速型PyTorch的关键前提之一。 #### 使用Conda创建虚拟环境并安装依赖项 借助Anaconda管理器可以简化整个过程中的许多复杂环节。通过建立一个新的基于Python 3.x版本(如3.8或更高)的conda环境来隔离不同项目间的潜在冲突,并在此基础上按照官方指导执行具体操作: ```bash conda create --name pytorch_env python=3.9 conda activate pytorch_env ``` #### 安装PyTorch GPU版本 接下来便是核心步骤——引入指定版本(此处特指2.0)且针对特定硬件优化过的PyTorch库文件。考虑到稳定性和性能表现,推荐采用如下方式获取最新发布的适用于Linux平台的PyTorch轮子(wheel),此法同样适用于其他操作系统下的相似需求场景[^3]: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` 上述命令假设读者已具备CUDA 11.7的支持;若有差异,则需调整URL参数匹配实际状况。 #### 验证安装成果 最后但同样重要的一环在于验证工作是否顺利完成。可以通过运行简单的测试脚本来检验所安装组件能否正常运作以及是否能够识别到可用的GPU资源: ```python import torch print(torch.cuda.is_available()) print(torch.__version__) ``` 如果一切无误,这段小程序应当返回`True`(表示存在可访问的GPU设备)以及预期的PyTorch版本号字符串。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值